Skip to main content
Log in

Type 2 diabetes-related genetic risk scores associated with variations in fasting plasma glucose and development of impaired glucose homeostasis in the prospective DESIR study

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

Genome-wide association studies have firmly established 65 independent European-derived loci associated with type 2 diabetes and 36 loci contributing to variations in fasting plasma glucose (FPG). Using individual data from the Data from an Epidemiological Study on the Insulin Resistance Syndrome (DESIR) prospective study, we evaluated the contribution of three genetic risk scores (GRS) to variations in metabolic traits, and to the incidence and prevalence of impaired fasting glycaemia (IFG) and type 2 diabetes.

Methods

Three GRS (GRS-1, 65 type 2 diabetes-associated single nucleotide polymorphisms [SNPs]; GRS-2, GRS-1 combined with 24 FPG-raising SNPs; and GRS-3, FPG-raising SNPs alone) were analysed in 4,075 DESIR study participants. GRS-mediated effects on longitudinal variations in quantitative traits were assessed in 3,927 nondiabetic individuals using multivariate linear mixed models, and on the incidence and prevalence of hyperglycaemia at 9 years using Cox and logistic regression models. The contribution of each GRS to risk prediction was evaluated using the C-statistic and net reclassification improvement (NRI) analysis.

Results

The two most inclusive GRS were significantly associated with increased FPG (β = 0.0011 mmol/l per year per risk allele, p GRS-1  = 8.2 × 10−5 and p GRS-2  = 6.0 × 10−6), increased incidence of IFG and type 2 diabetes (per allele: HR GRS-1 1.03, p = 4.3 × 10−9 and HR GRS-2 1.04, p = 1.0 × 10−16), and the 9 year prevalence (OR GRS-1 1.13 [95% CI 1.10, 1.17], p = 1.9 × 10−14 for type 2 diabetes only; OR GRS-2 1.07 [95% CI 1.05, 1.08], p = 7.8 × 10−25, for IFG and type 2 diabetes). No significant interaction was found between GRS-1 or GRS-2 and potential confounding factors. Each GRS yielded a modest, but significant, improvement in overall reclassification rates (NRI GRS-1 17.3%, p = 6.6 × 10−7; NRI GRS-2 17.6%, p = 4.2 × 10−7; NRI GRS-3 13.1%, p = 1.7 × 10−4).

Conclusions/interpretation

Polygenic scores based on combined genetic information from type 2 diabetes risk and FPG variation contribute to discriminating middle-aged individuals at risk of developing type 2 diabetes in a general population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AROC:

Area under the receiver operating characteristic curve

DESIR:

Data from an Epidemiological Study on the Insulin Resistance Syndrome

DIAGRAM:

DIAbetes Genetics Replication And Meta-analysis

FHD:

Family history of diabetes

FPG:

Fasting plasma glucose

GRS:

Genetic risk score

GWAS:

Genome-wide association studies

HOMA2-B:

Derived HOMA index of beta cell function

HOMA2-S:

Derived HOMA index of insulin sensitivity

IFG:

Impaired fasting glycaemia

LMM:

Linear mixed model

MAGIC:

Meta-analysis of Glucose and Insulin-related traits Consortium

NFG:

Normal fasting glucose

NRI:

Net reclassification improvement

SNP:

Single nucleotide polymorphism

References

  1. Voight BF, Scott LJ, Steinthorsdottir V et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Dupuis J, Langenberg C, Prokopenko I et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42:105–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bonnefond A, Froguel P, Vaxillaire M (2010) The emerging genetics of type 2 diabetes. Trends Mol Med 16:407–416

    Article  CAS  PubMed  Google Scholar 

  4. Pal A, McCarthy MI (2013) The genetics of type 2 diabetes and its clinical relevance. Clin Genet 83:297–306

    Article  CAS  PubMed  Google Scholar 

  5. Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Scott RA, Lagou V, Welch RP et al (2012) Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 44:991–1005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Wilson PWF, Meigs JB, Sullivan L et al (2007) Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med 167:1068–1074

    Article  PubMed  Google Scholar 

  8. Lyssenko V, Jonsson A, Almgren P et al (2008) Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 359:2220–2232

    Article  CAS  PubMed  Google Scholar 

  9. Meigs JB, Shrader P, Sullivan LM et al (2008) Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 359:2208–2219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Cauchi S, Proença C, Choquet H et al (2008) Analysis of novel risk loci for type 2 diabetes in a general French population: the DESIR. study. J Mol Med (Berl) 86:341–348

    Article  CAS  Google Scholar 

  11. Hivert M-F, Jablonski KA, Perreault L et al (2011) Updated genetic score based on 34 confirmed type 2 diabetes Loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes 60:1340–1348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Talmud PJ, Hingorani AD, Cooper JA et al (2010) Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ 340:b4838

    Article  PubMed Central  PubMed  Google Scholar 

  13. Vassy JL, Meigs JB (2012) Is genetic testing useful to predict type 2 diabetes? Best Pract Res Clin Endocrinol Metab 26:189–201

    Article  PubMed Central  PubMed  Google Scholar 

  14. Balkau B, Lange C, Fezeu L et al (2008) Predicting diabetes: clinical, biological, and genetic approaches: data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care 31:2056–2061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. de Miguel-Yanes JM, Shrader P, Pencina MJ et al (2011) Genetic risk reclassification for type 2 diabetes by age below or above 50 years using 40 type 2 diabetes risk single nucleotide polymorphisms. Diabetes Care 34:121–125

    Article  PubMed Central  PubMed  Google Scholar 

  16. Vassy JL, Shrader P, Jonsson A et al (2011) Association between parental history of diabetes and type 2 diabetes genetic risk scores in the PPP-Botnia and Framingham Offspring Studies. Diabetes Res Clin Pract 93:e76–e79

    Article  PubMed Central  PubMed  Google Scholar 

  17. Mühlenbruch K, Jeppesen C, Joost H-G et al (2013) The value of genetic information for diabetes risk prediction—differences according to sex, age, family history and obesity. PLoS One 8:e64307

    Article  PubMed Central  PubMed  Google Scholar 

  18. Andersson EA, Allin KH, Sandholt CH et al (2013) Genetic risk score of 46 type 2 diabetes risk variants associates with changes in plasma glucose and estimates of pancreatic β-cell function over 5 years of follow-up. Diabetes 62:3610–3617

    Article  CAS  PubMed  Google Scholar 

  19. Renström F, Shungin D, Johansson I et al (2011) Genetic predisposition to long-term nondiabetic deteriorations in glucose homeostasis: ten-year follow-up of the GLACIER study. Diabetes 60:345–354

    Article  PubMed Central  PubMed  Google Scholar 

  20. Walford GA, Green T, Neale B et al (2011) Common genetic variants differentially influence the transition from clinically defined states of fasting glucose metabolism. Diabetologia 55:331–339

    Article  PubMed Central  PubMed  Google Scholar 

  21. Shaye K, Amir T, Shlomo S, Yechezkel S (2012) Fasting glucose levels within the high normal range predict cardiovascular outcome. Am Heart J 164:111–116

    Article  CAS  PubMed  Google Scholar 

  22. Vaxillaire M, Veslot J, Dina C et al (2008) Impact of common type 2 diabetes risk polymorphisms in the DESIR prospective study. Diabetes 57:244–254

    Article  CAS  PubMed  Google Scholar 

  23. Balkau B, Eschwege E, Tichet J, Marre M (1997) Proposed criteria for the diagnosis of diabetes: evidence from a French epidemiological study (D.E.S.I.R.). Diabetes Metab 23:428–434

    CAS  PubMed  Google Scholar 

  24. Genuth S, Alberti KGMM, Bennett P et al (2003) Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26:3160–3167

    Article  PubMed  Google Scholar 

  25. Voight BF, Kang HM, Ding J et al (2012) The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet 8:e1002793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Tam CH, Ho JS, Wang Y et al (2013) Use of Net Reclassification Improvement (NRI) method confirms the utility of combined genetic risk score to predict type 2 diabetes. PLoS One 8(12):e83093

    Article  PubMed Central  PubMed  Google Scholar 

  27. Grambsch PM, Therneau TM (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81:515–526

    Article  Google Scholar 

  28. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27:157–172

    Article  PubMed  Google Scholar 

  29. Pencina MJ, D’Agostino RB Sr, Demler OV (2012) Novel metrics for evaluating improvement in discrimination: net reclassification and integrated discrimination improvement for normal variables and nested models. Stat Med 31:101–113

    Article  PubMed Central  PubMed  Google Scholar 

  30. Jensen AC, Barker A, Kumari M et al (2011) Associations of common genetic variants with age-related changes in fasting and postload glucose: evidence from 18 years of follow-up of the Whitehall II cohort. Diabetes 60:1617–1623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Katoh S, Lehtovirta M, Kaprio J et al (2005) Genetic and environmental effects on fasting and postchallenge plasma glucose and serum insulin values in Finnish twins. J Clin Endocrinol Metab 90:2642–2647

    Article  CAS  PubMed  Google Scholar 

  32. Kelliny C, Ekelund U, Andersen LB et al (2009) Common genetic determinants of glucose homeostasis in healthy children: the European Youth Heart Study. Diabetes 58:2939–2945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Tabak AG, Jokela M, Akbaraly TN, Brunner EJ, Kivimäki M, Witte DR (2009) Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet 373:2215–2221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Gautier A, Roussel R, Lange C et al (2011) Effects of genetic susceptibility for type 2 diabetes on the evolution of glucose homeostasis traits before and after diabetes diagnosis: data from the D.E.S.I.R. Study. Diabetes 60:2654–2663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Meigs JB, Cupples LA, Wilson PW (2000) Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes 49:2201–2207

    Article  CAS  PubMed  Google Scholar 

  36. Van’t Riet E, Dekker JM, Sun Q et al (2010) Role of adiposity and lifestyle in the relationship between family history of diabetes and 20 year incidence of type 2 diabetes in U.S. women. Diabetes Care 33:763–767

    Article  Google Scholar 

  37. InterAct Consortium (2013) The link between family history and risk of type 2 diabetes is not explained by anthropometric, lifestyle or genetic risk factors: the EPIC-InterAct study. Diabetologia 56:60–69

    Article  Google Scholar 

  38. Eichler EE, Flint J, Gibson G et al (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Bonnefond A, Clément N, Fawcett K et al (2012) Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet 44:297–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Agarwala V, Flannick J, Sunyaev S, GoT2D Consortium, Altshuler D (2013) Evaluating empirical bounds on complex disease genetic architecture. Nat Genet 45:1418–1427

    Article  CAS  PubMed  Google Scholar 

  41. Levy JC, Matthews DR, Hermans MP (1998) Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 21:2191–2192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are sincerely indebted to all participants in the genetic study. We thank M. Deweirder and F. Allegaert (both at CNRS UMR 8199, Lille Pasteur Institute, Lille, France) for their invaluable management of DNA samples. The DESIR Study Group is composed of Inserm-U1018 (Paris: B. Balkau, P. Ducimetière, E. Eschwège), Inserm-U367 (Paris: F. Alhenc-Gelas), CHU d’Angers (A. Girault), Bichat Hospital (Paris: F. Fumeron, M. Marre, R. Roussel), CHU de Rennes (F. Bonnet), CNRS UMR-8199 (Lille: S. Cauchi, P. Froguel), Medical Examination Services (Alençon, Angers, Blois, Caen, Chartres, Chateauroux, Cholet, Le Mans, Orléans and Tours), Research Institute for General Medicine (J. Cogneau), the general practitioners of the region and the Cross- Regional Institute for Health (C. Born, E. Caces, M. Cailleau, N. Copin, J.G. Moreau, F. Rakotozafy, J. Tichet, S. Vol).

Funding

This study was supported by the Contrat de Projets Etat—Région Nord-Pas-DeCalais (CPER Axe Cardio-Diabète to PF), the Délégation Régionale à la Recherche et à la Technologie de la Région Nord-Pas-De-Calais, the European Union (Fonds Européen de Développement Régional to PF) and the Centre National de la Recherche Scientifique.

The DESIR study was supported by Inserm contracts with CNAMTS, Lilly, Novartis Pharma and Sanofi-aventis, and by Inserm (Réseaux en Santé Publique, Interactions entre les déterminants de la santé, Cohortes Santé TGIR 2008), the Association Diabète Risque Vasculaire, the Fédération Française de Cardiologie, La Fondation de France, ALFEDIAM, ONIVINS, Société Francophone du Diabète, Ardix Medical, Bayer Diagnostics, Becton Dickinson, Cardionics, Merck Santé, Novo Nordisk, Pierre Fabre, Roche and Topcon.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

MV and PF contributed to the conception and design of the study. MV contributed to data acquisition, analysis and interpretation, and drafted and wrote the manuscript. LY performed the data analysis, and contributed to interpretation of data and to writing the manuscript. SL and EE performed the SNP genotyping and contributed to acquisition of data. GR and AB contributed to data analysis and interpretation and to discussions. OL, MM and BB contributed to cohort study sample selection and data acquisition. PF contributed to discussions and critically revised the manuscript. All authors were involved in reviewing the manuscript and all approved the final version. MV is responsible for the integrity of the work as a whole.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martine Vaxillaire or Philippe Froguel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Fig. 1

(PDF 45 kb)

ESM Fig.2

(PDF 37 kb)

ESM Fig. 3

(PDF 28 kb)

ESM Fig. 4

(PDF 37 kb)

ESM Fig. 5

(PDF 36 kb)

ESM Fig. 6

(PDF 31 kb)

ESM Fig. 7

(PDF 40 kb)

ESM Table 1

(PDF 29 kb)

ESM Table 2

(PDF 25 kb)

ESM Table 3

(PDF 18 kb)

ESM Table 4

(PDF 21 kb)

ESM Table 5

(PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaxillaire, M., Yengo, L., Lobbens, S. et al. Type 2 diabetes-related genetic risk scores associated with variations in fasting plasma glucose and development of impaired glucose homeostasis in the prospective DESIR study. Diabetologia 57, 1601–1610 (2014). https://doi.org/10.1007/s00125-014-3277-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-014-3277-x

Keywords

Navigation