Skip to main content
Log in

High-depth resequencing of 312 accessions reveals the local adaptation of foxtail millet

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

A Correction to this article was published on 31 March 2021

This article has been updated

Abstract

Key message

Based on the high-density variation map, we identified genome-level evidence for local adaptation and demonstrated that Siprr37 with transposon insertion contributes to the fitness of foxtail millet in the northeastern ecoregion.

Abstract

Adaptation is a robust way through which plants are able to overcome environmental constraints. The mechanisms of adaptation in heterogeneous natural environments are largely unknown. Deciphering the genomic basis of local adaptation will contribute to further improvement in domesticated plants. To this end, we describe a high-depth (19.4 ×) haplotype map of 3.02 million single nucleotide polymorphisms in foxtail millet (Setaria italica) from whole-genome resequencing of 312 accessions. In the genome-wide scan, we identified a set of improvement signals (including the homologous gene of OsIPA1, a key gene controlling ideal plant architecture) related to the geographical adaptation to four ecoregions in China. In particular, based on the genome-wide association analysis results, we identified the contribution of a pseudo-response regulator gene, SiPRR37, to heading date adaptation in foxtail millet. We observed the expression changes of SiPRR37 resulted from a key Tc1–Mariner transposon insertion in the first intron. Positive selection analyses revealed that SiPRR37 mainly contributed to the adaptation of northeastern ecoregions. Taken together, foxtail millet adapted to the northeastern region by regulating the function of SiPRR37, which sheds lights on genome-level evidence for adaptive geographical divergence. Besides, our data provide a nearly complete catalog of genomic variation aiding the identification of functionally important variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  • Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bandillo NB, Anderson JE, Kantar MB, Stupar RM, Specht JE, Graef GL, Lorenz AJ (2017) Dissecting the genetic basis of local adaptation in soybean. Sci Rep 7:17195

    PubMed  PubMed Central  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561

    CAS  PubMed  Google Scholar 

  • Bettinger RL, Barton L, Morgan C, Chen F, Wang H, Guilderson TP, Ji DX, Zhang DJ (2010) The transition to agriculture at Dadiwan, People’s Republic of China. Curr Anthropol 51:703–714

    Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brutnell TP, Bennetzen JL, Vogel JP (2015) Brachypodium distachyon and Setaria viridis: model genetic systems for the grasses. Annu Rev Plant Biol 66:465–485

    CAS  PubMed  Google Scholar 

  • Cai YP, Wang LW, Chen L, Wu TT, Liu LP, Sun S, Wu CX, Yao WW, Jiang BJ, Yuan S, Han TF, Hou WS (2020) Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnol J 18:298–309

    CAS  PubMed  Google Scholar 

  • Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu XY, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diao XM, Schnable J, Bennetzen JL, Li JY (2014) Initiation of Setaria as a model plant. Front Agr Sci Eng 1:16–20

    Google Scholar 

  • Dong J, Sun N, Yang J, Deng ZG, Lan JQ, Qin GJ, He H et al (2019) The transcription factors TCP4 and PIF3 antagonistically regulate organ-specific light induction of SAUR genes to modulate cotyledon opening during de-etiolation in Arabidopsis. Plant Cell 31:1155–1170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doust AN, Diao XM (2017) Genetics and genomics of Setaria. Plant genetics and genomics: crops and models. Springer, New York, pp 96–98

    Google Scholar 

  • Doust AN, Devos KM, Gadberry MD, Gale MD, Kellogg EA (2004) Genetic control of branching in foxtail millet. Proc Natl Acad Sci USA 101:9045–9050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doust AN, Devos KM, Gadberry MD, Gale MD, Kellogg EA (2005) The genetic basis for inflorescence variation between foxtail and green millet (Poaceae). Genetics 169:1659–1672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1989) PHYLIP-phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Flood PJ, Hancock AM (2017) The genomic basis of adaptation in plants. Curr Opin Plant Biol 36:88–94

    CAS  PubMed  Google Scholar 

  • Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM (2011) A map of local adaptation in Arabidopsis thaliana. Science 334:86–89

    CAS  PubMed  Google Scholar 

  • Gao H, Jin MN, Zheng XM, Chen J, Yuan DY, Xin YY, Wang MQ et al (2014) Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci USA 111:16337–16342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groen SC, Ćalić I, Joly-Lopez Z, Platts AE, Choi JY, Natividad M, Dorph K et al (2020) The strength and pattern of natural selection on gene expression in rice. Nature 578:572–576

    CAS  PubMed  Google Scholar 

  • Hu H, Mauro-Herrera M, Doust AN (2018) Domestication and improvement in the model C4 grass, Setaria. Front Plant Sci 9:719

    PubMed  PubMed Central  Google Scholar 

  • Huang XH, Wei XH, Sang T, Zhao Q, Feng Q, Zhao Y, Li CY et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    CAS  PubMed  Google Scholar 

  • Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T et al (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45:707–711

    CAS  PubMed  Google Scholar 

  • Jaiswal V, Gupta S, Gahlaut V, Muthamilarasan M, Bandyopadhyay T, Ramchiary N, Prasad M (2019) Genome-wide association study of major agronomic traits in foxtail millet (Setaria italica L.) using ddRAD sequencing. Sci Rep 9:5020

    PubMed  PubMed Central  Google Scholar 

  • Jia GQ, Huang XH, Zhi H, Zhao Y, Zhao Q, Li WJ, Chai Y et al (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45:957–961

    CAS  PubMed  Google Scholar 

  • Jiao YQ, Wang YH, Xue DW, Wang J, Yan MX, Liu GF, Dong GJ et al (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544

    CAS  PubMed  Google Scholar 

  • Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB et al (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348–354

  • Klein RR, Miller FR, Dugas DV, Brown PJ, Burrell AM, Klein PE (2015) Allelic variants in the PRR37 gene and the human-mediated dispersal and diversification of sorghum. Theor Appl Genet 128:1669–1683

    CAS  PubMed  Google Scholar 

  • Koo BH, Yoo SC, Park JW, Kwon CT, Lee BD, An G, Zhang Z, Li J, Li Z, Paek NC (2013) Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant 6:1877–1888

    CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Li YH, Li Y, Lu H, Hong H, Yu T, Li H, Zhao T, Zhou X, Liu J, Zhou X, Jackson SA, Liu B, Qiu LJ (2020) A domestication-associated gene GmPRR3b regulates circadian clock and flowering time in soybean. Mol Plant. https://doi.org/10.1016/j.molp.2020.01.014

    Article  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with BurrowsWheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennel T, Ruan J, Homer N, Marth G et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    PubMed  PubMed Central  Google Scholar 

  • Li PH, Brutnell TP (2011) Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J Exp Bot 62:3031–3037

    CAS  PubMed  Google Scholar 

  • Li WT, Zhu ZW, Chern M, Yin JJ, Yang C, Ran L, Cheng MP et al (2017) A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170:114–126

    CAS  PubMed  Google Scholar 

  • Li XF, Liu HZ, Wang MQ, Liu HL, Tian XJ, Zhou WJ, Lü TX, Wang ZY, Chu CC, Fang J, Bu QY (2015) Combinations of Hd2 and Hd4 genes determine rice adaptability to Heilongjiang Province, northern limit of China. J Integr Plant Biol 57:698–707

    CAS  PubMed  Google Scholar 

  • Liu C, Qu XF, Zhou YH, Song GY, Abiri N, Xiao YH, Liang F, Jiang DM, Hu ZL, Yang DC (2018) OsPRR37 confers an expanded regulation of the diurnal rhythms of the transcriptome and photoperiodic flowering pathways in rice. Plant Cell Environ 41:630–645

    CAS  PubMed  Google Scholar 

  • Liu HH, Liu HQ, Zhou LN, Zhang ZH, Zhang X, Wang ML, Li HX, Lin ZW (2015a) Parallel domestication of the heading date 1 gene in cereals. Mol Biol Evol 32:2726–2737

    CAS  PubMed  Google Scholar 

  • Liu HJ, Wang XQ, Warburton ML, Wen WW, Jin ML, Deng M, Liu J et al (2015b) Genomic, transcriptomic, and phenomic variation reveals the complex adaptation of modern maize breeding. Mol Plant 8:871–884

    CAS  PubMed  Google Scholar 

  • Lu HY, Zhang JP, Liu KB, Wu NQ, Li YM, Zhou KS, Ye ML et al (2009) Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci USA 106:7367–7372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Dong L, Fang C, Liu S, Kong L, Cheng Q, Chen L et al (2020) Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet 52:428–436

    CAS  PubMed  Google Scholar 

  • Mauro-Herrera M, Doust AN (2016) Development and genetic control of plant architecture and biomass in the panicoid grass Setaria. PLoS ONE 11:e0151346

    PubMed  PubMed Central  Google Scholar 

  • Mauro-Herrera M, Wang XW, Barbier H, Brutnell TP, Devos KM, Doust AN (2013) Genetic control and comparative genomic analysis of flowering time in Setaria (Poaceae). G3 Genes Genom Genet 3:283–295

  • McCouch S, Baute GJ, Bradeen J, Bramel P, Bretting PK, Buckler E, Burke JM et al (2013) Feeding the future. Nature 499:23–24

    CAS  PubMed  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer RS, Choi JY, Sanches M, Plessis A, Flowers JM, Amas J, Dorph K et al (2016) Domestication history and geographical adaptation inferred from a SNP map of African rice. Nat Genet 48:1083–1088

    CAS  PubMed  Google Scholar 

  • Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV (2011) Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci USA 108:16469–16474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8:4321–4326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muthamilarasan M, Prasad M (2015) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genet 128:1–14

    CAS  PubMed  Google Scholar 

  • Nakamichi N, Kita M, Niinuma K, Ito S, Yamashino T, Mizoguchi T, Mizuno T (2007) Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway. Plant Cell Physiol 48:822–832

    CAS  PubMed  Google Scholar 

  • Ni XM, Xia QJ, Zhang HB, Cheng S, Li H, Fan GY, Guo T et al (2017) Updated foxtail millet genome assembly and gene mapping of nine key agronomic traits by resequencing a RIL population. GigaScience 6:1–8

    PubMed  PubMed Central  Google Scholar 

  • Pickrell JK, Pritchard JK (2012) Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet 8:e1002967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M et al (2016) Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet 48:1024–1030

    CAS  PubMed  Google Scholar 

  • Salomé PA, Weigel D, McClung CR (2010) The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. Plant Cell 22:3650–3661

    PubMed  PubMed Central  Google Scholar 

  • Shin JH, Blay S, McNeney B, Graham J (2006) LDheatmap: an R function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms. J Stat Softw 16:1–10

    Google Scholar 

  • Sierla M, Hõrak H, Overmyer K, Waszczak C, Yarmolinsky D, Maierhofer T, Vainonen JP et al (2018) The receptor-like pseudokinase GHR1 is required for stomatal closure. Plant Cell 30:2813–2837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snowdon RJ, Schiessl S (2019) Illuminating crop adaptation using population genomics. Mol Plant 12:27–29

    CAS  PubMed  Google Scholar 

  • Sun J, Luu NS, Chen ZH, Chen B, Cui XA, Wu JX, Zhang ZG, Lu TG (2019) Generation and characterization of a foxtail millet (Setaria italica) mutant library. Front Plant Sci 10:369

    PubMed  PubMed Central  Google Scholar 

  • Tang H, Pickrell JK, Pritchard JK (2012) Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet 8:e1002967

    Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    CAS  PubMed  Google Scholar 

  • Wang CF, Jia GQ, Zhi H, Niu ZG, Chai Y, Li W, Wang YF et al (2012a) Genetic diversity and population structure of chinese foxtail millet [Setaria italica (L.) Beauv.] landraces. G3 Genes Genom Genet 2:769–777

  • Wang J, Wang ZL, Du XF, Yang HQ, Han F, Han YH, Yuan F et al (2017) A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq. PLoS ONE 12:e0179717

  • Wang J, Zhou L, Shi H, Chern M, Yu H, Yi H, He M et al (2018) A single transcription factor promotes both yield and immunity in rice. Science 361:1026–1028

    CAS  PubMed  Google Scholar 

  • Wang LW, Sun S, Wu TT, Liu LP, Sun XG, Cai YP, Li JC et al (2020) Natural variation and CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnol J. https://doi.org/10.1111/pbi.13346

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes RR, Zhang F et al (2018) Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557:43–49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YP, Tang HB, DeBarry JD, Tan X, Li JP, Wang XY, Lee TH et al (2012b) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucl Acids Res 40:e49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZL, Wang J, Peng JX, Du XF, Jiang MS, Li YF, Han F et al (2019) QTL mapping for 11 agronomic traits based on a genome-wide Bin-map in a large F2 population of foxtail millet (Setaria italica (L.) P.Beauv.). Mol Breed 39:18

  • Wickham H (2016) ggplot2—elegant graphics for data analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Wu DZ, Liang Z, Yan T, Xu Y, Xuan LJ, Tang J, Zhou G et al (2019) Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. Mol Plant 12:30–43

    CAS  PubMed  Google Scholar 

  • Yang XY, Wan ZW, Perry L, Lu HY, Wang Q, Zhao CH, Li J et al (2012) Early millet use in northern China. Proc Natl Acad Sci USA 109:3726–3730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshitsu Y, Takakusagi M, Abe A, Takagi H, Uemura A, Yaegashi H, Terauchi R et al (2017) QTL-seq analysis identifies two genomic regions determining the heading date of foxtail millet, Setaria italica (L.) P.Beauv. Breed Sci 67:518–527

    PubMed  PubMed Central  Google Scholar 

  • Zhang C, Dong SS, Xu JY, He WM, Yang TL (2018) PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35:1786–1788

    Google Scholar 

  • Zhang GY, Liu X, Quan ZW, Cheng SF, Xu X, Pan SK, Xie M et al (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549–554

    CAS  PubMed  Google Scholar 

  • Zhang K, Fan GY, Zhang XX, Zhao F, Wei W, Du GH, Feng XF et al (2017) Identification of QTLs for 14 agronomically important traits in Setaria italica based on SNPs generated from high-throughput sequencing. G3 Genes Genom Genet 7:1587–1594

  • Zhang QJ, Zhu T, Xia EH, Shi C, Liu YL, Zhang Y, Liu Y et al (2014) Rapid diversification of five Oryza AA genomes associated with rice adaptation. Proc Natl Acad Sci USA 111:4954–4962

    Google Scholar 

  • Zhou ZK, Jiang Y, Wang Z, Gou ZH, Lyu J, Li WY, Yu YJ et al (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Key R&D Program of China (2018YFD1000706/2018YFD1000700), the Beijing Municipal Natural Science Foundation (6202011), the China Postdoctoral Science Foundation (Grant No. 2019M650555), the Beijing Postdoctoral Research Foundation (Agreement No. 2018–ZZ–054), Key Research & Development Plan of Hebei Province (19226378D) and HAAFS Agriculture Science and Technology Innovation Project (2019-4-2).

Author information

Authors and Affiliations

Authors

Contributions

JW and LY designed the research. CL, GW, JW and LY wrote the paper. XZ, YJ and LZ provided DNAs and collected the phenotype data. JM, CL, GW, HL, GW, LH, JZ, G-ML, G-QL and RC performed the population analysis and were involved in many discussion.

Corresponding authors

Correspondence to Jianhua Wei or Lei Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by Hai-Chun Jing.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article has been updated to transfer the copyright to springer.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 58 kb)

Supplementary Fig. S1

The geographic distribution of the 299 accessions by province of origin in China and the eight worldwide germplasm samples by country of origin. Bubble sizes are proportional to the number of accessions.

Supplementary Fig. S2

Sequencing depth of the 312 accessions.

Supplementary Fig. S3

Population structure analysis of all accessions using the program Admixture. (a) The cross-validation error estimate plotted for the population structure shows the optimal number of subpopulations at K = 8. (b) Different numbers of landraces and cultivars in the eight clades. (c) Genetic structure analysis based on different numbers of clusters. Different colors represent different ancestral populations. Each accession is represented by a vertical bar, and the length of each colored segment in each vertical bar represents the proportion contributed by ancestral populations.

Supplementary Fig. S4

Decay of LD in all accessions, landraces and improved cultivars.

Supplementary Fig. S5

Manhattan and quantile–quantile plots resulting from GWAS of two bioclimatic variables based on whole-genomic SNPs. (a) Annual mean temperature; (b) annual precipitation. Gray horizontal dashed lines indicate 1% Bonferroni-corrected genome-wide significance thresholds.

Supplementary Fig. S6

Manhattan and quantile–quantile plots resulting from GWAS of heading date based on whole-genomic SNPs. Gray horizontal dashed lines indicate 1% Bonferroni-corrected genome-wide significance thresholds.

Supplementary Fig. S7

Structural representation of the Tc1–Mariner transposon insertion and SiPRR37 haplotypes. (a) Structural representation of the Tc1–Mariner transposon at SiPRR37 locus. Picture is scaled except for the terminal inverted repeats and target site duplication. (b) Two haplotypes of SiPRR37 with or without Tc1–Mariner transposon.

Supplementary Fig. S8

The relationship of SiPRR37 and homologous genes in crops by unrooted phylogenetic tree analysis. Numbers at the branches indicate percentage of 1000 bootstrap replicates. The scale bar at the bottom represents genetic distance. The protein sequences were downloaded from Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html#). The accession numbers: OsPRR37 (LOC_Os07g49460), Ppd-H1 (HORVU2Hr1G013400), Ppd-D1a (Traes_2DS_2A961F39D), AtPRR7 (AT5G02810), SbPRR37 (Sobic.006G057866) and GmPRR37 (Glyma.12G073900).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wang, G., Li, H. et al. High-depth resequencing of 312 accessions reveals the local adaptation of foxtail millet. Theor Appl Genet 134, 1303–1317 (2021). https://doi.org/10.1007/s00122-020-03760-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03760-4

Navigation