Skip to main content
Log in

A combined BSA-Seq and linkage mapping approach identifies genomic regions associated with Phytophthora root and crown rot resistance in squash

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Two QTL mapping approaches were used to identify a total of six QTL associated with Phytophthora root and crown rot resistance in a biparental squash population.

Abstract

Phytophthora root and crown rot, caused by the soilborne oomycete pathogen Phytophthora capsici, leads to severe yield losses in squash (Cucurbita pepo). To identify quantitative trait loci (QTL) involved in resistance to this disease, we crossed a partially resistant squash breeding line with a susceptible zucchini cultivar and evaluated over 13,000 F2 seedlings in a greenhouse screen. Bulked segregant analysis with whole genome resequencing (BSA-Seq) resulted in the identification of five genomic regions—on chromosomes 4, 5, 8, 12, and 16—featuring significant allele frequency differentiation between susceptible and resistant bulks in each of two independent replicates. In addition, we conducted linkage mapping using a population of 176 F3 families derived from individually genotyped F2 individuals. Variation in disease severity among these families was best explained by a four-QTL model, comprising the same loci identified via BSA-Seq on chromosomes 4, 5, and 8 as well as an additional locus on chromosome 19, for a combined total of six QTL identified between both methods. Loci, whether those identified by BSA-Seq or linkage mapping, were of small-to-moderate effect, collectively accounting for 28–35% and individually for 2–10% of the phenotypic variance explained. However, a multiple linear regression model using one marker in each BSA-Seq QTL could predict F2:3 disease severity with only a slight drop in cross-validation accuracy compared to genomic prediction models using genome-wide markers. These results suggest that marker-assisted selection could be a suitable approach for improving Phytophthora crown and root rot resistance in squash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Whole genome resequencing reads used in BSA-Seq and genotyping-by-sequencing reads used in linkage mapping have been deposited in the National Center of Biotechnology Information Sequence Read Archive (SRA) under BioProject accession number PRJNA662576. Files containing allele counts used in BSA-Seq, genotype and phenotype data used in linkage mapping, and annotated variant calls used for candidate gene identification are available at CyVerse (https://datacommons.cyverse.org/browse/iplant/home/shared/GoreLab/dataFromPubs/Vogel_SquashQTL_2020). All scripts used for data analysis are available on Github (http://github.com/gmv23/Pcap-QTL-Mapping).

Availability of data and materials

All data generated in this project have been made publicly available, as described in the Materials and Methods. Seed for germplasm described in this study, as available, may be obtained upon reasonable request.

Code availability

All scripts used for data analysis are available on Github (http://github.com/gmv23/Pcap-QTL-Mapping).

References

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broman KW, Sen Ś (2009) Fit and exploration of multiple-QTL models. In: Broman KW, Sen S (eds) A guide to QTL mapping with R/qtl. Springer, New York, NY, pp 241–282

    Chapter  Google Scholar 

  • Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421

    Article  CAS  Google Scholar 

  • Camp AR, Lange HW, Reiners S, Dillard HR, Smart CD (2009) Tolerance of summer and winter squash lines to Phytophthora blight, 2008. Plant Dis Manag Rep 3:V022

    Google Scholar 

  • Chavez DJ, Kabelka EA, Chaparro JX (2011) Screening of Cucurbita moschata Duchesne germplasm for crown rot resistance to Floridian isolates of Phytophthora capsici Leonian. HortScience 46:536–540

    Article  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6:80–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decker DS (1988) Origin(s), evolution, and systematics of Cucurbita pepo (Cucurbitaceae). Econ Bot 42:4–15

    Article  Google Scholar 

  • Dunn AR, Milgroom MG, Meitz JC, McLeod A, Fry WE, McGrath MT, Dillard HR, Smart CD (2010) Population structure and resistance to mefenoxam of Phytophthora capsici in New York State. Plant Dis 94:1461–1468

    Article  CAS  PubMed  Google Scholar 

  • Dunn AR, Smart CD (2015) Interactions of Phytophthora capsici with resistant and susceptible pepper roots and stems. Phytopathology 105:1355–1361

    Article  CAS  PubMed  Google Scholar 

  • Duitama J, Sánchez-Rodríguez A, Goovaerts A, Pulido-Tamayo S, Hubmann G, Foulquié-Moreno MR, Thevelein JM, Verstrepen KJ, Marchal K (2014) Improved linkage analysis of quantitative trait loci using bulk segregants unveils a novel determinant of high ethanol tolerance in yeast. BMC Genomics 15:207

    Google Scholar 

  • Edwards MD, Gifford DK (2012) High-resolution genetic mapping with pooled sequencing. BMC Bioinformatics 13:S8

    Article  PubMed  PubMed Central  Google Scholar 

  • Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, Gresham D, Caudy AA, Kruglyak L (2010) Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 464:1039–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endelman JB (2011) Ridge regression and other kernels for genomic selection with R Package rrBLUP. Plant Gen 4:250–255

    Article  Google Scholar 

  • Enzenbacher TB, Hausbeck MK (2012) An evaluation of cucurbits for susceptibility to Cucurbitaceous and Solanaceous Phytophthora capsici isolates. Plant Dis 96:1404–1414

    Article  CAS  PubMed  Google Scholar 

  • Esteras C, Gómez P, Monforte AJ, Blanca J, Vicente-Dólera N, Roig C, Nuez F, Picó B (2012) High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genom 13:80

    Article  CAS  Google Scholar 

  • Fry WE (1978) Quantification of general resistance of potato cultivars and fungicide effects for integrated control of potato late blight. Phytopathology 68:1650

    Article  CAS  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109:11872–11877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gevens AJ, Donahoo RS, Lamour KH, Hausbeck MK (2007) Characterization of Phytophthora capsici from michigan surface irrigation water. Phytopathology 97:421–428

    Article  CAS  PubMed  Google Scholar 

  • Granke LL, Quesada-Ocampo L, Lamour K, Hausbeck MK (2012) Advances in research on Phytophthora capsici on vegetable crops in the United States. Plant Dis 96:1588–1600

    Article  PubMed  Google Scholar 

  • Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) circlize implements and enhances circular visualization in R. Bioinformatics 30:2811–2812

    Article  CAS  PubMed  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  CAS  PubMed  Google Scholar 

  • Hausbeck MK, Lamour KH (2004) Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Dis 88:1292–1303

    Article  PubMed  Google Scholar 

  • Holdsworth WL, LaPlant KE, Bell DC, Jahn MM, Mazourek M (2016) Cultivar-based introgression mapping reveals wild species-derived Pm-0, the major powdery mildew resistance locus in squash. PLoS ONE 11:e0167715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martínez CT (2003) Estimating and interpreting heritability for plant breeding an update. Plant Breed Rev 22:9–111

  • Huang L, Tang W, Bu S, Wu W (2020) BRM: a statistical method for QTL mapping based on bulked segregant analysis by deep sequencing. Bioinformatics 36:2150–2156

    Article  CAS  PubMed  Google Scholar 

  • Illa-Berenguer E, Van Houten J, Huang Z, van der Knaap E (2015) Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor Appl Genet 128:1329–1342

    Article  PubMed  Google Scholar 

  • Jackson KL, Yin J, Ji P (2012) Sensitivity of Phytophthora capsici on vegetable crops in Georgia to mandipropamid, dimethomorph, and cyazofamid. Plant Dis 96:1337–1342

    Article  CAS  PubMed  Google Scholar 

  • Jones LA, Worobo RW, Smart CD (2014) Plant-pathogenic oomycetes, Escherichia coli strains, and Salmonella spp. frequently found in surface water used for irrigation of fruit and vegetable crops in New York State. Appl Environ Microbiol 80:4814–4820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim S-G, Kim Y-H (2009) Histological and cytological changes associated with susceptible and resistant responses of chili pepper root and stem to Phytophthora capsici infection. Plant Pathol J 25:113–120

    Article  Google Scholar 

  • Kourelis J, van der Hoorn RAL (2018) Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30:285–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasnow CS, Hammerschmidt R, Hausbeck MK (2017) Characteristics of resistance to Phytophthora root and crown rot in Cucurbita pepo. Plant Dis 101:659–665

    Article  Google Scholar 

  • LaPlant KE, Vogel G, Reeves E, Smart CD, Mazourek M (2020) Performance and resistance to phytophthora crown and root rot in squash lines. HortTechnology 30:608–618

    Article  Google Scholar 

  • Lamour KH, Hausbeck MK (2000) Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology 90:396–400

    Article  CAS  PubMed  Google Scholar 

  • Lee BK, Kim BS, Chang SW, Hwang BK (2001) Aggressiveness to pumpkin cultivars of isolates of Phytophthora capsici from pumpkin and pepper. Plant Dis 85:497–500

    Article  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu W-Y, Kang J-H, Jeong H-S, Choi H-J, Yang H-B, Kim K-T, Choi D, Choi GJ, Jahn M, Kang B-C (2014) Combined use of bulked segregant analysis and microarrays reveals SNP markers pinpointing a major QTL for resistance to Phytophthora capsici in pepper. Theor Appl Genet 127:2503–2513

    Article  CAS  PubMed  Google Scholar 

  • Long A, Liti G, Luptak A, Tenaillon O (2015) Elucidating the molecular architecture of adaptation via evolve and resequence experiments. Nat Rev Genet 16:567–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S (2014) QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127:1491–1499

    Article  PubMed  Google Scholar 

  • Lust TA, Paris HS (2016) Italian horticultural and culinary records of summer squash (Cucurbita pepo, Cucurbitaceae) and emergence of the zucchini in 19th-century Milan. Ann Bot 118:53–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Magwene PM, Willis JH, Kelly JK (2011) The statistics of bulk segregant analysis using next generation sequencing. PLoS Comput Biol 7:e1002255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallard S, Cantet M, Massire A, Bachellez A, Ewert S, Lefebvre V (2013) A key QTL cluster is conserved among accessions and exhibits broad-spectrum resistance to Phytophthora capsici: a valuable locus for pepper breeding. Mol Breed 32:349–364

    Article  Google Scholar 

  • Melo ATO, Bartaula R, Hale I (2016) GBS-SNP-CROP: a reference-optional pipeline for SNP discovery and plant germplasm characterization using variable length, paired-end genotyping-by-sequencing data. BMC Bioinformatics 17:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mendiburu FD, Simon R (2015) Agricolae - Ten years of an open source statistical tool for experiments in breeding, agriculture and biology. PeerJ PrePrints 3:e1404v1

  • Menezes CB, Maluf WR, Faria MV, Azevedo SM, Resende JT, Figueira AR, Gomes LA (2015) Inheritance of resistance to papaya ringspot virus-watermelon strain (PRSV-W) in “Whitaker” summer squash line. Crop Breed Appl Biotechnol 15:203–209

    Article  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer MD, Hausbeck MK (2012) Using cultural practices and cultivar resistance to manage Phytophthora crown rot on summer squash. HortScience 47:1080–1084

    Article  Google Scholar 

  • Michael VN, Fu Y, Meru G (2019) Inheritance of resistance to phytophthora crown rot in Cucurbita pepo. HortScience 54:1156–1158

    Article  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montero-Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Martí-Gomez C, Ferriol M, Gómez P, Jamilena M, Mueller L, Picó B, Cañizares J (2018) De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnol J 16:1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Montero-Pau J, Blanca J, Esteras C, Martínez-Pérez EM, Gómez P, Monforte AJ, Cañizares J, Picó B (2017) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in zucchini using genotyping-by-sequencing. BMC Genom 18:94

    Article  CAS  Google Scholar 

  • Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P (2018) Navigating complexity to breed disease-resistant crops. Nat Rev Genet 19:21–33

    Article  CAS  PubMed  Google Scholar 

  • Ogundiwin EA, Berke TF, Massoudi M, Black LL, Huestis G, Choi D, Lee S, Prince JP (2005) Construction of 2 intraspecific linkage maps and identification of resistance QTLs for Phytophthora capsici root-rot and foliar-blight diseases of pepper (Capsicum annuum L.). Genome 48:698–711

    Article  CAS  PubMed  Google Scholar 

  • Padley LD, Kabelka EA, Roberts PD (2009) Inheritance of resistance to crown rot caused by Phytophthora capsici in Cucurbita. HortScience 44:211–213

    Article  Google Scholar 

  • Padley LD, Kabelka EA, Roberts PD, French R (2008) Evaluation of Cucurbita pepo accessions for crown rot resistance to isolates of Phytophthora capsici. HortScience 43:1996–1999

    Article  Google Scholar 

  • Parra G, Ristaino JB (2001) Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Dis 85:1069–1075

    Article  CAS  PubMed  Google Scholar 

  • Pérez P, de Campos G, los, (2014) Genome-wide regression and prediction with the BGLR statistical package. Genetics 198:483–495

    Article  PubMed  PubMed Central  Google Scholar 

  • Piccini C, Parrotta L, Faleri C, Romi M, Del Duca S, Cai G (2019) Histomolecular responses in susceptible and resistant phenotypes of Capsicum annuum L. infected with Phytophthora capsici. Sci Hortic 244:122–133

    Article  CAS  Google Scholar 

  • Pool JE (2016) Genetic mapping by bulk segregant analysis in Drosophila: experimental design and simulation-based inference. Genetics 204:1295–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2019) R: A langauge and environment for statistical computing. Austria, Vienna

    Google Scholar 

  • Ramos A, Fu Y, Michael V, Meru G (2020) QTL-seq for identification of loci associated with resistance to Phytophthora crown rot in squash. Sci Rep 10:5326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehrig WZ, Ashrafi H, Hill T, Prince J, Van Deynze A (2014) CaDMR1 cosegregates with QTL Pc5.1 for resistance to Phytophthora capsici in pepper (Capsicum annuum). Plant Genome 7:1–12

    Article  CAS  Google Scholar 

  • Rhodes AM (1964) Inheritance of powdery mildew resistance in the genus Cucurbita. Plant Dis Rep 48:54–55

    Google Scholar 

  • Sanjur OI, Piperno DR, Andres TC, Wessel-Beaver L (2002) Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: implications for crop plant evolution and areas of origin. Proc Natl Acad Sci USA 99:535–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddique MI, Lee H-Y, Ro N-Y, Han K, Venkatesh J, Solomon AM, Patil AS, Changkwian AC, Kwon J-K, Kang B-C (2019) Identifying candidate genes for Phytophthora capsici resistance in pepper (Capsicum annuum) via genotyping-by-sequencing-based QTL mapping and genome-wide association study. Sci Rep 9:9962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun H, Wu S, Zhang G et al (2017) Karyotype stability and unbiased fractionation in the paleo-allotetraploid Cucurbita genomes. Mol Plant 10:1293–1306

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Abe A, Yoshida K et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Taylor J, Butler D (2017) R package ASMap: efficient genetic linkage map construction and diagnosis. J Stat Soft 79:1–29

    Article  Google Scholar 

  • Thabuis A, Palloix A, Pflieger S, Daubéze A-M, Caranta C, Lefebvre V (2003) Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor Appl Genet 106:1473–1485

    Article  CAS  PubMed  Google Scholar 

  • Thabuis A, Palloix A, Servin B, Daubéze AM, Signoret P, Hospital F, Lefebvre V (2004) Marker-assisted introgression of 4 Phytophthora capsici resistance QTL alleles into a bell pepper line: validation of additive and epistatic effects. Mol Breed 14:9–20

    Article  CAS  Google Scholar 

  • Tian D, Babadoost M (2004) Host range of Phytophthora capsici from pumpkin and pathogenicity of isolates. Plant Dis 88:485–489

    Article  CAS  PubMed  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogenous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011

    Article  CAS  Google Scholar 

  • Truong HTH, Kim KT, Kim DW, Kim S, Chae Y, Park JH, Oh DG, Cho MC (2012) Identification of isolate-specific resistance QTLs to phytophthora root rot using an intraspecific recombinant inbred line population of pepper (Capsicum annuum). Plant Pathol 61:48–56

    Article  CAS  Google Scholar 

  • USDA-NASS (2019) Chapter IV statistics of vegetables of and melons. In: Agricultural statistics 2019, pp 1-41

  • Wang Y, Tang H, Debarry JD et al (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Wu H, Zhao G, He Y, Kong W, Zhang J, Liu S, Liu M, Hu K, Liu L, Xu Y, Xu Z (2020) Transcriptome analysis clarified genes involved in resistance to Phytophthora capsici in melon. PLoS ONE 15:e0227284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenger JW, Schwartz K, Sherlock G (2010) Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet 6:e1000942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu Y, Bhat PR, Close TJ, Lonardi S (2008) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet 4:e1000212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Z, Huang D, Tang W, Zheng Y, Liang K, Cutler AJ, Wu W (2013) Mapping of quantitative trait loci underlying cold tolerance in rice seedlings via high-throughput sequencing of pooled extremes. PLoS ONE 8:e68433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Wu S, Bai Y et al (2019) Cucurbit genomics database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Res 47:D1128–D1136

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for technical assistance from Andrew Aldcroft, Mariami Bekauri, Colin Day, Garrett Giles, Holly Lange, Nicholas King, Carolina Puentes Silva, and Carolina Vogel, as well as statistical advice from Chris Hernandez and Ryokei Tanaka. We would also like to thank Jeff Glaubitz, Peter Schweitzer, and Jing Wu from the Cornell Institute of Biotechnology for consultation regarding library preparation for whole genome sequencing; Mainor Najera, Fernando Villalta Mata, and Andrés Villalta Pereira from VillaPlants for provision of seed increase services; and Mary Kreitinger for assistance in obtaining permits for shipping of seed, tissue, and supplies.

Funding

Funding for this project was provided by the Cucurbit Coordinated Agricultural Project (CucCAP; USDA National Institute of Food and Agriculture Specialty Crop Research Initiative Grant No. 2015-51181-24285) and the New York State Department of Agriculture and Markets.

Author information

Authors and Affiliations

Authors

Contributions

GMV, MM, MAG, and CDS conceived and designed the experiments. GMV and KEL performed the experiments. GMV conducted the data analysis and wrote the manuscript under the guidance of MAG and CDS. All authors edited the manuscript and read and approved the final version.

Corresponding author

Correspondence to Christine D. Smart.

Ethics declarations

Conflict of interest

MM is a cofounder of Row 7 Seeds but has no financial stake in the company.

Additional information

Communicated by Amnon Levi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogel, G., LaPlant, K.E., Mazourek, M. et al. A combined BSA-Seq and linkage mapping approach identifies genomic regions associated with Phytophthora root and crown rot resistance in squash. Theor Appl Genet 134, 1015–1031 (2021). https://doi.org/10.1007/s00122-020-03747-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03747-1

Keywords

Navigation