Skip to main content
Log in

Genetic characterization of qSCN10 from an exotic soybean accession PI 567516C reveals a novel source conferring broad-spectrum resistance to soybean cyst nematode

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The qSCN10 locus with broad-spectrum SCN resistance was fine-mapped to a 379-kb region on chromosome 10 in soybean accession PI 567516C. Candidate genes and potential application benefits of this locus were discussed.

Abstract

Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most devastating pests of soybean, causing significant yield losses worldwide every year. Genetic resistance has been the major strategy to control this pest. However, the overuse of the same genetic resistance derived primarily from PI 88788 has led to the genetic shifts in nematode populations and resulted in the reduced effectiveness in soybean resistance to SCN. Therefore, novel genetic resistance resources, especially those with broad-spectrum resistance, are needed to develop new resistant cultivars to cope with the genetic shifts in nematode populations. In this study, a quantitative trait locus (QTL) qSCN10 previously identified from a soybean landrace PI 567516C was confirmed to confer resistance to multiple SCN HG Types. This QTL was further fine-mapped to a 379-kb region. There are 51 genes in this region. Four of them are defense-related and were regulated by SCN infection, suggesting their potential role in mediating resistance to SCN. The phylogenetic and haplotype analyses of qSCN10 as well as other information indicate that this locus is different from other reported resistance QTL or genes. There was no yield drag or other unfavorable traits associated with this QTL when near-isogenic lines with and without qSCN10 were tested in a SCN-free field. Therefore, our study not only provides further insight into the genetic basis of soybean resistance to SCN, but also identifies a novel genetic resistance resource for breeding soybean for durable, broad-spectrum resistance to this pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen TW, Bradley CA, Sisson AJ, ByamukamaE Chilvers MI, Coker CM et al (2017) Soybean yield loss estimates due to diseases in the United States, and Ontario, Canada, from 2010 to 2014. Plant Health Prog 18:19–27

    Google Scholar 

  • Arelli PR, Sleper DA, Yue P, Wilcox JA (2000) Soybean reactions to races 1 and 2 of Heterodera glycines. Crop Sci 40:824–826

    Google Scholar 

  • Arelli PR, Young LD, Concibido VC (2009) Inheritance of resistance in soybean PI 567516C to LY1 nematode population infecting cv Hartwig. Euphytica 165:1–4

    CAS  Google Scholar 

  • Arelli PR, Wilcox JA, Myers J, Gibson PT (1997) Soybean germplasm resistant to races 1 and 2 of Heterodera glycines. Crop Sci 37:1367–1369

    Google Scholar 

  • Bayless AM, Zapotocny RW, Grunwald DJ, Amundson KK, Diers BW, Bent AF (2018) An atypical N-ethylmaleimide sensitive factor enables the viability of nematode-resistant Rhg1 soybeans. Proc Natl Acad Sci USA 115:E4512–E4521. https://doi.org/10.1073/pnas.1717070115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchez O, Huard C, Lorrain S, Roby D, Balague C (2007) Ethylene is one of the key elements for cell death and defense response control in the Arabidopsis lesion mimic mutant vad1. Plant Physiol 145:465–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown S, Yeckel G, Heinz R, Clark K, Sleper D, Mitchum MG (2010) A high-throughput automated technique for counting females of Heterodera glycines using a fluorescence-based imaging system. J Nematol 42:201–206

    PubMed  PubMed Central  Google Scholar 

  • Byrd DW Jr, Kirkpatrick T, Barker KR (1983) An improved technique for clearing and staining plant tissue for detection of nematodes. J Nematol 15:142–143

    Google Scholar 

  • Chen X, Li S, Zhao X, Zhu X, Wang Y, Xuan Y, Liu X, Fan H, Chen L, Duan Y (2020) Modulation of (homo)glutathione metabolism and H2O2 accumulation during soybean cyst nematode infections in susceptible and resistant soybean cultivars. Int J Mol Sci 21:388

    CAS  PubMed Central  Google Scholar 

  • Chen Y, Wang D, Arelli P, Ebrahimi M, Nelson RL (2006) Molecular marker diversity of SCN-resistant sources in soybean. Genome 49:938–949

    CAS  PubMed  Google Scholar 

  • Concibido VC, Diers BW, Arelli PR (2004) A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci 44:1121–1131

    CAS  Google Scholar 

  • Cook DE, Bayless AM, Wang K, Guo X, Song Q, Jiang J, Bent AF (2014) Distinct copy number, coding sequence, and locus methylation patterns underlie Rhg1-mediated soybean resistance to soybean cyst nematode. Plant Physiol 165:630–647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless AM, Wang J, Hughes TJ, Willis DK, Clemente TE, Diers BW, Jiang J, Hudson ME, Bent AF (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338:1206–1209. https://doi.org/10.1126/science.1228746

    Article  CAS  PubMed  Google Scholar 

  • Davis EL, Meyers DM, Burton JW, Barker KR (1998) Resistance to root-knot, reniform, and soybean cyst nematodes in selected soybean breeding lines. J Nematol 30:530–541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eitas TK, Dangl JL (2010) NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr Opin Plant Biol 13:472–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo B, Sleper DA, Arelli PR, Shannon JG, Nguyen HT (2005) Identification of QTLs associated with resistance to soybean cyst nematode races 2, 3 and 5 in soybean PI 90763. Theor Appl Genet 111:965–971

    CAS  PubMed  Google Scholar 

  • Han Y, Zhao X, Cao G, Wang Y, Li Y, Liu D, Teng W, Zhang Z, Li D, Qiu L, Zheng H, Li W (2015) Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping. BMC Genom 16:598

    Google Scholar 

  • Howland A, Monnig N, Mathesius J, Nathan M, Mitchum MG (2018) Survey of Heterodera glycines population densities and virulence phenotypes during 2015–2016 in Missouri. Plant Dis 102(12):2407–2410

    PubMed  Google Scholar 

  • Hua C, Li C, Hu Y, Mao Y, You J, Wang M, Chen J, Tian Z, Wang C (2018) Identification of HG types of soybean cyst nematode Heterodera glycines and resistance screening on soybean genotypes in northeast China. J Nematol 50:41–50

    PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Vuong TD, Liu Y, Li Z, Noe J, Robbins RT, Joshi T, Xu D, Shannon JG, Nguyen HT (2015) Identification of quantitative trait loci underlying resistance to southern root-knot and reniform nematodes in soybean accession PI 567516C. Mol Breed 35:131. https://doi.org/10.1007/s11032-015-0330-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadam S, Vuong TD, Qiu D, Meinhardt CG, Song L, Deshmukh R, Patil G, Wan J, Valliyodan B, Scaboo AM (2016) Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding. Plant Sci 242:342–350. https://doi.org/10.1016/j.plantsci.2015.08.015

    Article  CAS  PubMed  Google Scholar 

  • Kidd VJ (1998) Proteolytic activities that mediate apoptosis. Annu Rev Physiol 60:533–573. https://doi.org/10.1146/annurev.physiol.60.1.533

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Hyten DL, Bent AF, Diers BW (2010) Fine mapping of the SCN resistance locus rhg1-b from PI 88788. Plant Genom 3(2):81–89. https://doi.org/10.3835/plantgenome2010.02.0001

    Article  Google Scholar 

  • Klepadlo M, Meinhardt CG, Vuong TD, Patil G, Bachleda N, Ye H, Robbins RT, Li Z, Shannon JG, Chen P, Meksem K (2018) Evaluation of soybean germplasm for resistance to multiple nematode species: Heterodera glycines, Meloidogyne incognita, and Rotylenchulus reniformis. Crop Sci 58(6):2511–2522

    Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lakhssassi N, Patil G, Piya S, Zhou Z, Baharlouei A, Kassem MA, Lightfoot DA, Hewezi T, Barakat A, Nguyen HT, Meksem K (2019) Genome reorganization of the GmSHMT gene family in soybean showed a lack of functional redundancy in resistance to soybean cyst nematode. Sci Rep 9:1506. https://doi.org/10.1038/s41598-018-37815-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YH, Chen SY, Young ND (2004a) Effect of the Rhg1 gene on penetration, development and reproduction of Heterodera glycines race 3. Nematology 6:729–736

    CAS  Google Scholar 

  • Li Y, Chen S, Young ND (2004b) Effect of rhg1 gene on penetration, development, and reproduction of Heterodera glycines race 3. Nematology 6:727–734

    Google Scholar 

  • Li X, Fan S, Hu W, Liu G, Wei Y, He C, Shi H (2017) Two cassava basic leucine zipper (bZIP) transcription factors (MebZIP3 and MebZIP5) confer disease resistance against cassava bacterial blight. Front Plant Sci 8:2110. https://doi.org/10.3389/fpls.2017.02110

    Article  PubMed  PubMed Central  Google Scholar 

  • Lian Y, Guo JQ, Li HC, Wu YK, Wei H, Wang JS, Li JY, Lu WG (2017) A new race (X12) of soybean cyst nematode in China. J Nematol 49(3):321–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lian Y, Wang JS, Li HC, Wei H, Li JY, Wu YK, Lei CF, Zhang H, Wang SF, Guo JQ, Li YX, Li ZH, Jin QL, Xu SX, Zhang ZM, Yang CY, Yu HY, Geng Z, Shu WT, Lu WG (2016) Race distribution of soybean cyst nematode in the main soybean producing area of Huang-Huai Rivers Valley. Acta Agron Sin 42(10):1479–1486

    Google Scholar 

  • Lim CW, Baek W, Lim S, Han SW, Lee SC (2015) Expression and functional roles of the pepper pathogen-induced bZIP transcription factor, CabZIP2, in enhanced disease resistance to bacterial pathogen infection. Mol Plant Microbe Interact 28:825–833

    CAS  PubMed  Google Scholar 

  • Liu S, Kandoth PK, Warren SD, Yeckel G, Heinz R, Alden J, Yang C, Jamai A, El-Mellouki T, Juvale PS, Hill J, Baum TJ, Cianzio S, Whitham SA, Korkin D, Mitchum MG, Meksem K (2012) A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492:256–260

    CAS  PubMed  Google Scholar 

  • Liu S, Kandoth PK, Lakhssassi N, Kang J, Colantonio V, Heinz R, Yechel G, Zhou Z, Bekal S, Dapprich J, Rotter B, Cianzio S, Mitchum MG, Meksem K (2017) The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode. Nat Commun 8:14822

    CAS  PubMed  PubMed Central  Google Scholar 

  • López-Jiménez AT, Cardenal-Muñoz E, Leuba F (2018) The ESCRT and autophagy machineries cooperate to repair ESX-1-dependent damage at the Mycobacterium-containing vacuole but have opposite impact on containing the infection. PLoS Pathog 14(12):e1007501

    PubMed  PubMed Central  Google Scholar 

  • McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7(4):212. https://doi.org/10.1186/gb-2006-7-4-212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. https://doi.org/10.1101/gr.107524.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meksem K, Pantazopoulos P, Njiti VN, Hyten LD, Arelli PR, Lightfoot DA (2001) ‘Forrest’ resistance to soybean cyst nematode is bigenic: saturation mapping of the Rhg1 and Rhg4 loci. Theor Appl Genet 103:710–717

    CAS  Google Scholar 

  • Mitchum MG (2016) Soybean resistance to the soybean cyst nematode Heterodera glycines: an update. Phytopathology 106:1444–1450

    CAS  PubMed  Google Scholar 

  • Mulrooney RP, Gregory NF, Heinz RD (2010) Soybean cyst nematode populations in Delaware are shifting in response to widespread planting of soybean cultivars with resistance from PI88788. J Nematol 42(3):259–260

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neupane S, Mathew FM, VarenhorstAJ, et al (2019) Transcriptome profiling of interaction effects of soybean cyst nematodes and soybean aphids on soybean. Sci Data 6:133. https://doi.org/10.1038/s41597-019-0140-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niblack TL, Arelli PR, Noel GR, Opperman CH, Orf JH, Schmitt DP, Shannon JG, Tylka GL (2002) A revised classification scheme for genetically diverse populations of Heterodera glycines. J Nematol 34:279–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niblack TL, Colgrove AL, Colgrove K, Bond JP (2008) Shift in virulence of soybean cyst nematode is associated with use of resistance from PI 88788. Plant Health Prog 9:29

    Google Scholar 

  • Niblack T, Tylka GL, Arelli P, Bond J, Diers B, Donald P, Faghihi J, Ferris VR, Gallo K, Heinz RD, Lopez-Nicora H, Von Qualen R, Welacky T, Wilcox J (2009) A standard greenhouse method for assessing soybean cyst nematode resistance in soybean: sCE08 (standardized cyst evaluation 2008). Plant Health Prog. https://doi.org/10.1094/PHP-2009-0513-01-RV

    Article  Google Scholar 

  • Patil GB, Lakhssassi N, Wan J, Song L, Zhou Z, Klepadlo M, Vuong TD, Stec AO, Kahil SS, Colantonio V, Valliyodan B, Rice JH, Piya S, Hewezi T, Stupar RM, Meksem K, Nguyen HT (2019) Whole-genome re-sequencing reveals the impact of the interaction of copy number variants of the rhg1 and Rhg4 genes on broad-based resistance to soybean cyst nematode. Plant Biotechnol J 17:1595–1611. https://doi.org/10.1111/pbi.13086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson J, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26. https://doi.org/10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt DP, Shannon JG (1992) Differentiating soybean responses to Heterodera glycines races. Crop Sci 32:275–277

    Google Scholar 

  • Severin AJ, Woody JL, Bolon YT, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE, Graham MA, Cannon SB, May GD, Vance CP, Shoemaker RC (2010) RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol. https://doi.org/10.1186/1471-2229-10-160

    Article  PubMed  PubMed Central  Google Scholar 

  • Steffens B, Sauter M (2009) Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. Plant Cell 21:184–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tang D, Wang G, Zhou JM (2017) Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell 29:618–637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tylka GL, Marett CC (2017) Known distribution of the soybean cyst nematode, Heterodera glycines, in the United States and Canada: 1954 to 2017. Plant Health Prog 18:167–168

    Google Scholar 

  • Valliyodan B, Qiu D, Patil G, Zeng P, Huang J, Dai L, Chen C, Li Y, Joshi T, Song L, Vuong TD, Musket TA, Xu D, Shannon JG, Shifeng C, Liu X, Nguyen HT (2016) Landscape of genomic diversity and trait discovery in soybean. Sci Rep. https://doi.org/10.1038/srep23598

    Article  PubMed  PubMed Central  Google Scholar 

  • Vuong TD, Sleper DA, Shannon JG et al (2011) Confirmation of quantitative trait loci for resistance to multiple-HG types of soybean cyst nematode (Heterodera glycines Ichinohe). Euphytica 181:101

    Google Scholar 

  • Vuong TD, Sleper DA, Shannon JG, Nguyen HT (2010) Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines Ichinohe) in soybean PI 567516C. Theor Appl Genet 121:1253–1266

    CAS  PubMed  Google Scholar 

  • Vuong TD, Sonah H, Meinhardt CG, Deshmukh R, Kadam S, Nelson RL, Shannon JG, Nguyen HT (2015) Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genom. https://doi.org/10.1186/s12864-015-1811-y

    Article  Google Scholar 

  • Wan J, Vuong T, Jiao Y, Joshi T, Zhang H, Dong Xu, Nguyen HT (2015) Whole-genome gene expression profiling revealed genes and pathways potentially involved in regulating interactions of soybean with cyst nematode (Heterodera glycines Ichinohe). BMC Genom 16:1–48

    CAS  Google Scholar 

  • Whitham SA, Qi M, Innes RW, Ma W, Lopes-Caitar V, Hewezi T (2016) Molecular soybean–pathogen interactions. Ann Rev Phytopathol 54:443–468

    CAS  Google Scholar 

  • Winter SMJ, Shelp BJ, Anderson TR, Welacky TW, Rajcan I (2006) QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI 464925B. Theor Appl Genet 114:461–472

    PubMed  Google Scholar 

  • Wu X, Blake S, Sleper DA, Shannon JG, Cregan P, Nguyen HT (2009) QTL, additive and epistatic effects for SCN resistance in PI 437654. Theor Appl Genet 118:1093–1105

    CAS  PubMed  Google Scholar 

  • Xu X, Zeng L, Tao Y, Vuong T, Wan J, Boerma R, Noe J, Li Z, Finnerty S, Pathan SM, Shannon JG, Nguyen HT (2013) Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci USA 110(33):13469–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young LD (1998) Heterodera glycines populations selected for reproduction on Hartwig soybean. J Nematol 30:523

    Google Scholar 

  • Young LD (1999) Soybeans resistant to Heterodera glycines populations attacking Hartwig cultivar. J Nematol 31:583

    Google Scholar 

  • Yu N, Diers BW (2017) Fine mapping of the SCN resistance QTL cqSCN-006 and cqSCN-007 from Glycine soja PI 468916. Euphytica 213:54

    Google Scholar 

  • Zhang H, Li C, Davis EL, Wang J, Griffin JD, Kofsky J, Song BH (2016) Genome-wide association study of resistance to soybean cyst nematode (Heterodera glycines) HG type 2.5.7 in wild soybean (Glycine soja). Front Plant Sci. https://doi.org/10.3389/fpls.2016.01214

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this study provided by the United States Department of Agriculture—National Institute of Food and Agriculture (USDA-NIFA) Grant 2019-67013-29370 and the USDA multiple state/hatch project MO-MSPS0002.

Author information

Authors and Affiliations

Authors

Contributions

LZ, LS, HY, and HTN conceived and designed the project; LS and TV contributed to the development of the mapping populations; LZ, LS, YL, and MK collected plant materials and performed genotyping and phenotyping experiments. LZ and LS contributed to the data analysis; LZ wrote the manuscript; HY, TV, and JW contributed to discussion of the manuscript; and all authors critically revised the paper.

Corresponding author

Correspondence to Henry T. Nguyen.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Communicated by Istvan Rajcan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Song, L., Lian, Y. et al. Genetic characterization of qSCN10 from an exotic soybean accession PI 567516C reveals a novel source conferring broad-spectrum resistance to soybean cyst nematode. Theor Appl Genet 134, 859–874 (2021). https://doi.org/10.1007/s00122-020-03736-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03736-4

Navigation