Skip to main content
Log in

Whole-genome sequencing reveals uniqueness of black-hulled and straw-hulled weedy rice genomes

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Both SH and BHA weedy rice genotypes evolved independently and have distinct genomic composition. Different genetic mechanisms may be responsible for their competitiveness and adaptation to diverse environmental conditions.

Abstract

Two major types of weedy rice are recognized in the USA based on morphology: straw-hull (SH) and black-hull awned (BHA) weedy rice. We performed whole-genome resequencing of a SH weedy rice ‘PSRR-1’, a BHA weedy rice ‘BHA1115’, and a japonica cultivar ‘Cypress’ to delineate genome-wide differences and their relevance to genetics and evolution of weedy attributes. The high-quality reads were uniformly distributed with 82–88% genome coverage. The number of genotype-specific SNPs and InDels was highest in Cypress, followed by BHA1115 and PSRR-1. However, more genes were affected in BHA1115 compared with other two genotypes which is evident from the number of high-impact SNPs and InDels. Haplotype analysis of selected genes involved in domestication, adaptation, and agronomic performance not only differentiated SH from BHA weedy rice and supported evolution of weedy rice through de-domestication, but also validated the function of several genes such as qAn-1, qAn-2, Bh4, Rc, SD1, OsLG1, and OsC1. Several candidate genes were identified for previously reported seed dormancy and seed shattering QTLs. The SH and BHA weedy rice have distinct genomic composition, and the BHA weedy rice likely diverged earlier than SH weedy rice. The accumulation of plant development, reproduction, and defense-related genes in weedy rice possibly helped them to compete, survive, and spread under a wide range of environmental conditions by employing novel and diverse mechanisms. The genomic resources will be useful for both weed management and rice improvement by exploring the molecular basis of key agronomic, adaptive, and domestication attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All relevant data are provided as tables and figures with the paper and in the supplementary materials.

Abbreviations

SH:

Straw hulled

BHA:

Black-hulled awned

CPRS:

Cypress

QTL:

Quantitative trait locus

SNP:

Single-nucleotide polymorphism

InDel:

Insertions and deletions

RIL:

Recombinant inbred lines

CDS:

Coding sequences

UTR:

Untranslated regions

GO:

Gene ontology

NGS:

Next-generation sequencing

References

  • Abyzov A, Alexander E E, Urban AE, Snyder M, Gerstein M (2011) CNVnator: an approach to discover, genotype and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. https://doi.org/10.1101/gr.114876.110

    Article  PubMed  PubMed Central  Google Scholar 

  • Alani E, Subbiah S, Kleckner N (1989) The yeast RAD50 gene encodes a predicted 153-kD protein containing a purine nucleotide-binding domain and two large heptad-repeat regions. Genetics 122:47–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blancquaert D, Van Daele J, Storozhenko S, Stove C, Lambert W, Van Der Straeten D (2013) Rice folate enhancement through metabolic engineering has an impact on rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes. Plant Mol Biol 83:329–349

    CAS  PubMed  Google Scholar 

  • Borjas AH, De Leon TB, Subudhi PK (2016) Genetic analysis of germinating ability and seedling vigor under cold stress in US weedy rice. Euphytica 208:251–264

    Google Scholar 

  • Burgos NR, Norman RJ, Gealy DR, Black H (2006) Competitive N uptake between rice and weedy rice. Field Crops Res 99:96–105

    Google Scholar 

  • Chai C, Shankar R, Jain M, Subudhi PK (2018) Genome-wide discovery of DNA polymorphisms by whole genome sequencing differentiates weedy and cultivated rice. Sci Rep 8:14218

    PubMed  PubMed Central  Google Scholar 

  • Cingolani P, Platts A, Wang LL et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6:80–92

    CAS  Google Scholar 

  • Danecek P, Auton A, Abecasis G, 1000 Genomes Project Analysis Group et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Wet JMJ, Harlan JR (1975) Weeds and domesticates: evolution in the man-made habitat. Econ Bot 29:99–108

    Google Scholar 

  • Dievart A, Clark SE (2004) LRR-containing receptors regulating plant development and defense. Development 131:251–261

    CAS  PubMed  Google Scholar 

  • Dolatabadian A, Patel DA, Edwards D, Batley J (2017) Copy number variation and disease resistance in plants. Theor Appl Genet 13:2479–2490

    Google Scholar 

  • Estorninos LE, Gealy DR, Gbur EE, Talbert RE, McClelland MR (2005) Rice and red rice interference. II. Rice response to population densities of three red rice (Oryza sativa) ecotypes. Weed Sci 53:683–689

    CAS  Google Scholar 

  • Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res 14:1812–1819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M (2008) Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc Natl Acad Sci USA 105:12623–12628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukao T, Bailey-Serres J (2008) Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci USA 105:16814–16819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gealy DH, Agrama H, Jia MH (2012) Genetic analysis of a typical U.S. red rice phenotypes: indications of prior gene flow in rice fields? Weed Sci 60:451–461

    CAS  Google Scholar 

  • Gu XY, Foley ME, Horvath DP et al (2011) Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics 189:1515–1524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu B, Zhou T, Luo J et al (2015) An-2 encodes a cytokinin synthesis enzyme that regulates awn length and grain production in rice. Mol Plant 8:1635–1650

    CAS  PubMed  Google Scholar 

  • He Q, Kim KW, Park YJ (2017) Population genomics identifies the origin and signatures of selection of Korean weedy rice. Plant Biotechnol J 15:357–366

    CAS  PubMed  Google Scholar 

  • Hua L, Wang DR, Tan L et al (2015) LABA1, a domestication gene associated with long, barbed awns in wild rice. Plant Cell 27:1875–1888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii T, Numaguchi K, Miura K et al (2013) OsLG1 regulates a closed panicle trait in domesticated rice. Nat Genet 45:462

    CAS  PubMed  Google Scholar 

  • Jain M, Moharana KC, Shankar R, Kumari R, Garg R (2014) Genomewide discovery of DNA polymorphisms in rice cultivars with contrasting drought and salinity stress response and their functional relevance. Plant Biotechnol J 12:253–264

    CAS  PubMed  Google Scholar 

  • Ji H, Kim SR, Kim YH et al (2010) Inactivation of the CTD phosphatase-like gene OsCPL1 enhances the development of the abscission layer and seed shattering in rice. Plant J 61:96–106

    CAS  PubMed  Google Scholar 

  • Jia Y, Gealy D (2018) Weedy red rice has novel sources of resistance to biotic stress. Crop J 6:443–450

    Google Scholar 

  • Klambauer G, Schwarzbauer K, Mayr A, Clevert DA, Mitterecker A, Bodenhofer U, Hochreiter S (2012) cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucl Acid Res 40(9):e69

    CAS  Google Scholar 

  • Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396

    CAS  PubMed  Google Scholar 

  • Krishnan G, Waters DLE, Henry RJ (2014) Australian wild rice reveals pre-domestication origin of polymorphism deserts in rice genome. PLoS ONE 9:e98843

    Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larson DE, Abel HJ, Chiang C et al (2019) svtools: population-scale analysis of structural variation. Bioinformatics 35(22):4782–4787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Layer RM, Chiang C, Quinlan AR, Hall IM (2014) LUMPY: a probabilistic framework for structural variant discovery. Genome Biol 15:R84

    PubMed  PubMed Central  Google Scholar 

  • Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:13033997 [q-bioGN]

  • Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939

    CAS  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    PubMed  PubMed Central  Google Scholar 

  • Li C-H, Wang G, Zhao J-L et al (2014) The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell 26:2538–2553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li LF, Li YL, Jia Y, Caicedo AL, Olsen KM (2017) Signatures of adaptation in the weedy rice genome. Nat Genet 49:811

    CAS  PubMed  Google Scholar 

  • Linscombe SD, Jodari F, McKenzie KS, Bollich PK, White LM, Groth DE, Dunand RT (1993) Registration of ‘Cypress’ rice. Crop Sci 33:355

    Google Scholar 

  • Londo JP, Schaal BA (2007) Origins and population genetics of weedy red rice in the USA. Mol Ecol 16:4523–4535

    CAS  PubMed  Google Scholar 

  • Luo J, Liu H, Zhou T et al (2013) An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell 25:3360–3376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Dai X, Xu Y et al (2015) COLD1 confers chilling tolerance in rice. Cell 160:1209–1221

    CAS  PubMed  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y et al (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    CAS  PubMed  Google Scholar 

  • Oh DH, Dassanayake M, Bohnert HJ, Cheeseman JM (2012) Life at the extreme: lessons from the genome. Genome Biol 13:241

    PubMed  PubMed Central  Google Scholar 

  • Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7:e30619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu J, Zhu J, Fu F et al (2014) Genome re-sequencing suggested a weedy rice origin from domesticated indica-japonica hybridization: a case study from southern China. Planta 240:1353–1363

    CAS  PubMed  Google Scholar 

  • Qiu J, Zhou Y, Mao L et al (2017) Genomic variation associated with local adaptation of weedy rice during de-domestication. Nat Commun 8:15323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rathore M, Singh R, Kumar B, Chauhan BS (2016) Characterization of functional trait diversity among Indian cultivated and weedy rice populations. Sci Rep 6:24176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reagon M, Thurber CS, Gross BL, Olsen KM, Jia Y, Caicedo AL (2010) Genomic patterns of nucleotide diversity in divergent populations of US weedy rice. BMC Evol Biol 10:180

    PubMed  PubMed Central  Google Scholar 

  • Saitoh K, Onishi K, Mikami I, Thidar K, Sano Y (2004) Allelic diversification at the C (OsC1) locus of wild and cultivated rice: nucleotide changes associated with phenotypes. Genetics 168:997–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M et al (2002) A mutant gibberellin-synthesis gene in rice. Nature 416:701–702

    CAS  PubMed  Google Scholar 

  • Sheen J, Zhou L, Jang JC (1999) Sugars as signaling molecules. Curr Opin Plant Biol 2:410–418

    CAS  PubMed  Google Scholar 

  • Shen H, Zhong X, Zhao F et al (2015) Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nat Biotechnol 33:996

    CAS  PubMed  Google Scholar 

  • Shivrain VK, Burgos NR, Gealy DR, Smith KL, Scott RC, Mauromoustakos A, Black H (2009) Red rice (Oryza sativa) emergence characteristics and influence on rice yield at different planting dates. Weed Sci 57:94–102

    CAS  Google Scholar 

  • Shivrain VK, Burgos NR, Scott RC, Gbur EE, Estorninos LE, McClelland MR (2010) Diversity of weedy red rice (Oryza sativa L.) in Arkansas, USA in relation to weed management. Crop Prot 29:721–730

    Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99:9043–9048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart CN Jr (2017) Becoming weeds. Nat Genet 49:654

    CAS  PubMed  Google Scholar 

  • Subbaiyan GK, Waters DL, Katiyar SK, Sadananda AR, Vaddadi S, Henry RJ (2012) Genome-wide DNA polymorphisms in elite indica rice inbreds discovered by whole-genome sequencing. Plant Biotechnol J 10:623–634

    CAS  PubMed  Google Scholar 

  • Subudhi PK, Parco A, Singh PK et al (2012) Genetic architecture of seed dormancy in U.S. weedy rice in different genetic backgrounds. Crop Sci 52:2564–2575

    Google Scholar 

  • Subudhi PK, Singh PK, DeLeon T et al (2014) Mapping of seed shattering loci provides insights into origin of weedy rice and rice domestication. J Hered 105:276–287

    CAS  PubMed  Google Scholar 

  • Sugimoto K, Takeuchi Y, Ebana K et al (2010) Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci USA 107:5792–5797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Ma D, Tang L et al (2019) Population genomic analysis and de novo assembly reveal the origin of weedy rice as an evolutionary game. Mol Plant 12:632–647

    CAS  PubMed  Google Scholar 

  • Sweeney MT, Thomson MJ, Pfeil BE, McCouch S (2006) Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell 18:283–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan L, Li X, Liu F et al (2008) Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40:1360–1364

    CAS  PubMed  Google Scholar 

  • Tang N, Ma S, Zong W et al (2016) MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice. Plant Cell 28:2161–2177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thurber CS, Reagon M, Olsen KM, Jia Y, Caicedo AL (2014) The evolution of flowering strategies in US weedy rice. Am J Bot 101:1737–1747

    PubMed  Google Scholar 

  • Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucl Acids Res 45:W122–W129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tong W, He Q, Park YJ (2017) Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice. Sci Rep 7:43327

    PubMed  PubMed Central  Google Scholar 

  • Vaughan DA, Lu BR, Tomooka N (2008) Was Asian rice (Oryza sativa) domesticated more than once? Rice 1:16–24

    Google Scholar 

  • Wang L, Hao L, Li X, Hu S, Ge S, Yu J (2009) SNP deserts of Asian cultivated rice: genomic regions under domestication. J Evol Biol 22:751–761

    CAS  PubMed  Google Scholar 

  • Xing S, Li M, Liu P (2013) Evolution of S-domain receptor-like kinases in land plants and origination of S-locus receptor kinases in Brassicaceae. BMC Evol Biol 13:69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Xu X, Fukao T et al (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    CAS  PubMed  Google Scholar 

  • Yu Y, Tang T, Qian Q et al (2008) Independent losses of function in a polyphenol oxidase in rice: differentiation in grain discoloration between subspecies and the role of positive selection under domestication. Plant Cell 20:2946–2959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Li J, Pan Y et al (2017) Natural variation in CTB4a enhances rice adaptation to cold habitats. Nat Commun 8:14788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Chan Z, Gao J et al (2016) ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci USA 113:1949–1954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Wang X, Jia Y et al (2018) The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat Commun 9:2039

    PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Lu D, Li C et al (2012) Genetic control of seed shattering in rice by the APETALA2 transcription factor shattering abortion1. Plant Cell 24:1034–1048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu BF, Si L, Wang Z et al (2011) Genetic control of a transition from black to straw-white seed hull in rice domestication. Plant Physiol 155:1301–1311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziska LH, McClung A (2008) Differential response of cultivated and weedy (red) rice to recent and projected increases in atmospheric carbon dioxide. Agron J 100:1259–1263

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture (Grant No. 2006-35320-16555). This manuscript is approved for publication by the Director of Louisiana Agricultural Experiment Station, USA as Manuscript Number 2020-306-34605.

Author information

Authors and Affiliations

Authors

Contributions

PKS conceived and designed the experiment. MSI conducted the experiment and wrote the manuscript. MSI and SC analyzed data. PKS critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Prasanta Kumar Subudhi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Takuji Sasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.S., Coronejo, S. & Subudhi, P.K. Whole-genome sequencing reveals uniqueness of black-hulled and straw-hulled weedy rice genomes. Theor Appl Genet 133, 2461–2475 (2020). https://doi.org/10.1007/s00122-020-03611-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03611-2

Navigation