Skip to main content
Log in

Mapping versatile QTL for soybean downy mildew resistance

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Three versatile QTL for soybean downy mildew resistance in Japan were detected using five RIL populations and confirmed using recombinant fixed pairs or a backcrossed line.

Abstract

Downy mildew reduces soybean seed quality and size. It is a problem in Japan, where 90% of soybean grown is used as food. In the USA, 33 downy mildew races have been reported, but race differentiation in Japan is unclear. To identify quantitative trait loci (QTL) for downy mildew resistance effective in the Kanto and Tohoku regions, we performed QTL analysis using five populations of recombinant inbred lines (RILs) originated from ‘Natto-shoryu’ × ‘Tachinagaha’ (NT), ‘Natto-shoryu’ × ‘Suzumaru’, ‘Satonohohoemi’ × ‘Fukuibuki’ (SF), ‘Kinusayaka’ × ‘COL/Akita/2009/TARC/1,’ and ‘YR-82’ × ‘Harosoy’ over a 4-year period (2014–2017). We evaluated spontaneously developed symptoms of the RILs and applied 112–233 polymorphic markers to each population. Out of 31 QTL detected, we found five on chromosome 3 in three populations and another five on chromosome 7 in three populations. Other QTL were detected in one population, nine of them in different years. In the NT population, two QTL were detected in a 3.0-Mb region on chromosome 7 and in an 8.1-Mb region on chromosome 18 by evaluating nine recombinant fixed pairs in both Kanto and Tohoku regions. In the SF population, a QTL on chromosome 8 was detected in both regions. This QTL was introduced into the ‘Satonohohoemi’ background by backcrossing, and its effect was confirmed in both regions. In summary, two QTL on chromosomes 7 and 18 from the NT population and one QTL on chromosome 8 from the SF population were confirmed to be effective in both Tohoku and Kanto regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bernard RL, Cremeens CR (1971) A gene for general resistance to downy mildew of soybean. J Hered 16:359–362

    Article  Google Scholar 

  • Chowdhury AK, Srinives P, Saksoong P, Tongpamnak P (2002) RAPD markers linked to resistance to downy mildew disease in soybean. Euphytica 128:55–60

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Department of Energy Joint Genome Institute Community Sequencing Program (2013) Soybase—integrating genetics and genomics to advance soybean research. https://soybase.org/. Accessed 31 Aug 2018

  • Dunleavy JM (1971) Races of Peronospora manshurica in the United States. Am J Bot 58:209–211

    Article  Google Scholar 

  • Fujii K, Sayama T, Takagi K, Kosuge K, Okano K, Kaga A, Ishimoto M (2018) Identification and dissection of single seed weight QTLs by analysis of seed yield components in soybean. Breed Sci 68:177–187

    Article  PubMed  PubMed Central  Google Scholar 

  • Geesman GE (1950) Physiological races of Peronospora manshurica on soybeans. Agron J 42:257–258

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Lim SM (1989) Inheritance of resistance to Peronospora manshurica races 2 and 33 in soybean. Phytopathology 79:877–879

    Article  Google Scholar 

  • Lim SM, Bernard RL, Nickell CD, Gray LE (1984) New physiological race of Peronospora manshurica virulent to the gene Rpm in soybeans. Plant Dis 68:71–72

    Article  Google Scholar 

  • Ministry of agriculture, forestry and fisheries (MAFF) (2017) FY2016 summary of the annual report on food, agriculture and rural areas in Japan, pp 20. http://www.maff.go.jp/e/data/publish/attach/pdf/index-57.pdf. Accessed 17 Oct 2018

  • Ministry of agriculture, forestry and fisheries (MAFF) (2018a) Sheet ‘n366_367’ of statistical tables 4 pulses and miscellaneous cereals, VII, Crops. In: The 91st statistical yearbook of ministry of agriculture, forestry and fisheries. http://www.maff.go.jp/e/data/stat/91th/index.html#7. Accessed 31 Aug 2018

  • Ministry of Agriculture, Forestry and Fisheries (MAFF) (2018b) Sheet ‘n382_383’ of Statistical Tables 5. Vegetables, VII, Crops. In: The 91st statistical yearbook of ministry of agriculture, forestry and fisheries. http://www.maff.go.jp/e/data/stat/91th/index.html#7. Accessed 31 Aug 2018

  • Murakami S, Hashimoto K, Yunoki T (1977) Varietal differences in resistance to downy mildew of soybeans. Bull Tohoku Natl Agric Exp Stn 55:229–234

    Google Scholar 

  • Nair R, Schafleitner R, Easdown W, Ebert A, Hanson P, Hughes J, Keatinge JDH (2014) Legume improvement program at AVRDC—the world vegetable center: impact and future prospects. Ratar Povrt 51:55–61

    Article  Google Scholar 

  • Palmer RG, Pfeiffer TW, Buss GR, Kilen TC (2004) Qualitative Genetics. In: Boerma HR, Specht JE (eds) Agronomy monograph 16, soybeans: improvement, production, and uses, 3rd edn. APS Press, St. Paul, pp 137–233

    Google Scholar 

  • Phillips DV (1999) Downy mildew. In: Hartman GL, Sinclair JB, Rupe JC (eds) Compendium of soybean diseases, 4th edn. APS Press, St. Paul, pp 230–257

    Google Scholar 

  • Song QJ, Jia GF, Zhu YL, Grant DM, Nelson R, Hwang EY, Hyten DL, Cregan PB (2010) Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean. Crop Sci 50:1950–1960

    Article  CAS  Google Scholar 

  • Sugiyama S, Fukushima C, Washio S (1980) The reaction of soybean varieties to downy mildew (Peronospora manshurica). Ann Rep Plant Prot North Jpn 31:67–68

    Google Scholar 

Download references

Acknowledgements

This study was supported by Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science (JSPS KAKENHI Grant Number JP16K07565).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumio Taguchi-Shiobara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by David A Lightfoot.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taguchi-Shiobara, F., Fujii, K., Sayama, T. et al. Mapping versatile QTL for soybean downy mildew resistance. Theor Appl Genet 132, 959–968 (2019). https://doi.org/10.1007/s00122-018-3251-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3251-y

Navigation