Skip to main content
Log in

Patterns of genomic variation in Chinese maize inbred lines and implications for genetic improvement

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Genetic relationships among Chinese maize germplasms reveal historical trends in heterotic patterns from Chinese breeding programs and identify line Dan340 as a potential genome donor for elite inbred line Zheng58.

Abstract

The characterization of the genetic relationships, heterotic patterns and breeding history of lines in maize breeding programs allows breeders to efficiently use maize germplasm for line improvement over time. In this study, 269 temperate inbred lines, most of which have been widely used in Chinese maize breeding programs since the 1970s, were genotyped using the Illumina MaizeSNP50 BeadChip, which contains 56,110 single-nucleotide polymorphisms. The STRUCTURE analysis, cluster analysis and principal coordinate analysis results consistently revealed seven groups, of which five were consistent with known heterotic groups within the Chinese maize germplasm—Domestic Reid, Lancaster, Zi330, Tang SPT and Tem-tropic I (also known as “P”). These genetic relationships also allowed us to determine the historical trends in heterotic patterns during the three decades from 1970 to 2000, represented by Mo17 from Lancaster, HuangZaoSi (HZS) from Tang SPT, Ye478 from Domestic Reid and P178 from Tem-tropic I heterotic groups. Mo17-related commercial hybrids were widely used in the 1970s and 1980s, followed by the release of HZS- and Ye478-related commercial hybrids in the 1980s and 1990s, and the introduction of Tem-tropic I group in the 1990s and 2000s. Additionally, we identified inbred line Dan340 as a potential genome donor for Zheng58, which is the female parent of the most widely grown commercial hybrid ZhengDan958 in China. We also reconstructed the recombination events of elite line HZS and its 14 derived lines. These findings provide useful information to direct future maize breeding efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chen L, Li YX, Li CH, Wu X, Qin WW, Li X, Jiao FC, Zhang XJ, Zhang DF, Shi YS, Song YC, Li Y, Wang TY (2016) Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize. BMC Plant Biol 16:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, Depristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du CX, Cao CJ, Cao Q, Bi MM, Dong ZK, Zhang FL (2006) The breeding and application of maize hybrid Zhengdan 958. J Maize Sci 14:43–45

    Google Scholar 

  • Duvick DN (2005) Genetic progress in yield of United States maize (Zea mays L.). Maydica 50:193–202

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • FAO (2014) FAOSTAT, Production, http://www.fao.org/faostat/en/#data. Cited 23 Aug 2017

  • Ganal MW, Durstewitz G, Polley A, Berard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J, Le Paslier MC, McMullen MD, Montalent P, Rose M, Schön CC, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One 6:e28334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heerwaarden JV, Hufford MB, Ross-Ibarra J (2012) Historical genomics of North American maize. Proc Natl Acad Sci USA 109:12420–12425

    Article  PubMed  PubMed Central  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Lai JS, Li RQ, Xun X, Jin WW, Xu ML, Zhao HN, Xiang ZK, Song WB, Ying K, Zhang M, Jiao Y, Ni PX, Zhang JG, Li D, Guo XS, Ye KX, Jian M, Wang B, Zheng HS, Liang HQ, Zhang XQ, Wang SC, Chen SJ, Li JS, Fu Y, Springer NM, Yang HM, Wang J, Dai JR, Schnable PS, Wang J (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42:1027–1030

    Article  CAS  PubMed  Google Scholar 

  • Lambert RJ, Alexander DE, Mejaya IJ (2004) Single kernel selection for increased grain oil in maize synthetics and high-oil hybrid development. Plant Breed Rev 24:153–175

    CAS  Google Scholar 

  • Li Y (1998) Development and germplasm base of maize hybrids in China. Maydica 43:259–269

    Google Scholar 

  • Li JS (2009) Production, breeding and process of maize in China. In: Jeff LB, Sarah CH (eds) Handbook of maize: its biology. Springer, New York, pp 563–576

    Chapter  Google Scholar 

  • Li Y, Wang TY (2010) Germplasm base of maize breeding in China and formation of foundation parents. J Maize Sci 18:1–8

    Google Scholar 

  • Li CH, Li YX, Bradbury PJ, Wu X, Shi YS, Song YC, Zhang DF, Rodgersmelnick E, Buckler ES, Zhang ZW, Li Y, Wang TY (2015) Construction of high-quality recombination maps with low-coverage genomic sequencing for joint linkage analysis in maize. BMC Biol 13:1–12

    Article  Google Scholar 

  • Liu KJ, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Lu YL, Yan JB, Guimarães CT, Taba S, Hao ZF, Gao SB, Chen SJ, Li JS, Zhang SH, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Parentoni SN, Shah T, Rong TZ, Crouch JH, Xu YB (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115

    Article  CAS  PubMed  Google Scholar 

  • Mikel MA (2011) Genetic composition of contemporary US commercial dent corn germplasm. Crop Sci 51:592–599

    Article  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollak LM, Salhuana W (2001) The Germplasm Enhancement of Maize (GEM) Project: Private and Public Sector Collaboration. CABI, Wallingford, pp 319–329

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin WW, Li YX, Li CH, Chen L, Wu X, Bai N, Shi YS, Song YC, Zhang DF, Wang TY, Li Y (2015) QTL mapping for kernel related traits based on a high-density genetic map. Acta Agron Sin 41:1510–1518

    Article  CAS  Google Scholar 

  • Qu G, Xu WW, Chen DY, Li FZ, Shi JG, Liu X, Ning JL (2002) The breeding and application of the elite maize inbred line Dan340. J Maize Sci 10:30–33

    Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. Computing 14:12–21

    Google Scholar 

  • Reif JC, Xia XC, Melchinger AE, Warburton ML, Hoisington DA, Beck D, Bohn M, Frisch M (2004) Genetic diversity determined within and among CIMMYT maize populations of tropical, subtropical, and temperate germplasm by SSR markers. Crop Sci 44:326–334

    Article  CAS  Google Scholar 

  • Salhuana W, Pollak L (2006) Latin American Maize Project (LAMP) and Germplasm Enhancement of Maize (GEM) project: generating useful breeding germplasm. Maydica 51:339–355

    Google Scholar 

  • Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Ziegle J (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L): comparisons with data from RFLPS and pedigree. Theor Appl Genet 95:163–173

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan WW, Wang Y, Li YX, Liu C, Liu ZZ, Peng B, Wang D, Zhang Y, Sun BC, Shi YS (2011) QTL analysis of ear traits in maize across multiple environments. Sci Agric Sin 44:233–244

    Google Scholar 

  • Teng WT, Can JS, Chen YH, Liu XH, Jing XQ, Zhang FJ, Li JS (2004) Analysis of maize heterotic groups and patterns during past decade in China. Sci Agric Sin 37:1804–1811

    Google Scholar 

  • The Service Center of China for Agricultural Science and Technology (2005) The brief introduction on crop approved varieties of china. China Agricultural Science Press, Beijing

    Google Scholar 

  • Troyer AF (2009) Development of hybrid corn and the seed corn industry. In: Hake JL (ed) Maize handbook-volume II: genetics and genomics. Springer Science Business Media LLC, New York, pp 87–114

    Chapter  Google Scholar 

  • Wang RH, Yu YT, Zhao JR, Shi YS, Song YC, Wang TY, Li Y (2008) Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theor Appl Genet 117:1141–1153

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Li YX, Wang Y, Liu C, Liu ZZ, Peng B, Tan WW, Zhang Y, Sun BC, Shi YS (2010) QTL analysis of flowering-related traits in maize (Zea mays L.) using two connected populations. Sci Agric Sin 43:2633–2644

    Google Scholar 

  • Wang TY, Ma XL, Li Y, Bai DP, Liu C, Liu ZZ, Tan XJ, Shi YS, Song YC, Carlone M, Bubeck D, Bhardwaj H, Jones E, Wright K, Smith S (2011) Changes in yield and yield components of single-cross maize hybrids released in China between 1964 and 2001. Crop Sci 51:512–525

    Article  Google Scholar 

  • Wu X, Li YX, Shi YS, Song YC, Wang TY, Huang YB, Li Y (2014) Fine genetic characterization of elite maize germplasm using high-throughput SNP genotyping. Theor Appl Genet 127:621–631

    Article  PubMed  Google Scholar 

  • Wu X, Li YX, Shi YS, Song YC, Zhang DF, Li CH, Buckler ES, Li Y, Zhang ZW, Wang TY (2016) Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnol J 14:1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie CX, Zhang SH, Li MS, Li XH, Hao ZF, Bai L, Zhang DG, Liang YH (2007) Inferring genome ancestry and estimating molecular relatedness among 187 chinese maize inbred lines. J Genet Genom 34:738–748

    Article  Google Scholar 

  • Yang XH, Yan JB, Shah T, Warburton ML, Li Q, Li L, Gao YF, Chai YC, Fu ZY, Zhou Y, Xu ST, Bai GH, Meng YJ, Zheng YP, Li JS (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet 121:417–431

    Article  PubMed  Google Scholar 

  • Yang XH, Gao SB, Xu ST, Zhang ZX, Prasanna BM, Li L, Li JS, Yan JB (2011) Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed 28:511–526

    Article  Google Scholar 

  • Zeng SX, Ren R, Liu XZ (1996) The important position of Huangzaosi in maize breeding and production in China. J Maize Sci 4:1–6

    Google Scholar 

  • Zhang FL (2001) The breeding and application of maize elite inbred line Zheng58. Crops 4:21

    Google Scholar 

  • Zhang X, Zhang H, Li LJ, Lan H, Ren ZY, Liu D, Wu L, Liu HL, Jaqueth J, Li BL, Pan GT, Gao SB (2016) Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers. BMC Genom 17:697

    Article  Google Scholar 

  • Zhao KM (2003) A list of maize hybrid crosses in China. J Maize Sci 10(s1):98–117

    Google Scholar 

  • Zhao JR, Guo JL, Guo Q, Yu DM, Kong YF (1999) Heterotic grouping of 25 maize inbreds with RAPD markers. Acta Agric Boreali Sin 14:32–37

    Google Scholar 

  • Zheng DH, Li YR, Jin FX, Jiang JJ (2002) Pedigree and germplasm base of inbreds of the Lancaster heterotic group of maize in China. Sci Agric Sin 1:595–604

    Google Scholar 

Download references

Acknowledgements

We greatly appreciate Dr. Qing Li at Huazhong Agricultural University for manuscript language improvement. This research was supported by the National Science and Technology Support Program (Grant number 2014BAD01B02) and the National Key Research and Development Program of China (Grant number 2016YFD0101803 and 2016YFD0100303).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huihui Li or Xiaohong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by Benjamin Stich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1014 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Xu, G., Li, J. et al. Patterns of genomic variation in Chinese maize inbred lines and implications for genetic improvement. Theor Appl Genet 131, 1207–1221 (2018). https://doi.org/10.1007/s00122-018-3072-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3072-z

Navigation