Skip to main content
Log in

Comparative analysis of the radish genome based on a conserved ortholog set (COS) of Brassica

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

This manuscript provides a Brassica conserved ortholog set (COS) that can be used as diagnostic cross-species markers as well as tools for genetic mapping and genome comparison of the Brassicaceae.

Abstract

A conserved ortholog set (COS) is a collection of genes that are conserved in both sequence and copy number between closely related genomes. COS is a useful resource for developing gene-based markers and is suitable for comparative genome mapping. We developed a COS for Brassica based on proteome comparisons of Arabidopsis thaliana, B. rapa, and B. oleracea to establish a basis for comparative genome analysis of crop species in the Brassicaceae. A total of 1,194 conserved orthologous single-copy genes were identified from the genomes based on whole-genome BLASTP analysis. Gene ontology analysis showed that most of them encoded proteins with unknown function and chloroplast-related genes were enriched. In addition, 152 Brassica COS primer sets were applied to 16 crop and wild species of the Brassicaceae and 57.9–92.8 % of them were successfully amplified across the species representing that a Brassica COS can be used as diagnostic cross-species markers of diverse Brassica species. We constructed a genetic map of Raphanus sativus by analyzing the segregation of 322 COS genes in an F2 population (93 individuals) of Korean cultivars (WK10039 × WK10024). Comparative genome analysis based on the COS genes showed conserved genome structures between R. sativus and B. rapa with lineage-specific rearrangement and fractionation of triplicated subgenome blocks indicating close evolutionary relationship and differentiation of the genomes. The Brassica COS developed in this study will play an important role in genetic, genomic, and breeding studies of crop Brassicaceae species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Shehbaz I, Beilstein M, Kellogg E (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arias T, Beilstein M, Tang M, McKain M, Pires J (2014) Diversification times among Brassica (Brassicaceae) crops suggest hybrid formation after 20 million years of divergence. Am J Bot 101:86–91

    Article  PubMed  Google Scholar 

  • Beilstein M, Al-Shehbaz I, Kellogg E (2006) Brassicaceae phylogeny and trichome evolution. Am J Bot 93:607–619

    Article  CAS  PubMed  Google Scholar 

  • Beilstein M, Nagalingum N, Clements M, Manchester S, Mathews S (2010) Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci USA 107:18724–18728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bushakra JM, Sargent DJ, Cabrera A, Crowhurst R, Girona EL, Velasco R, Symonds VV, Knaap E, Troggio M, Gardiner SE, Chagné D (2011) Rosaceae conserved orthologous set (RosCOS) markers as a tool to assess genome synteny between Malus and Fragaria. Tree Genet Genomes 8:643–658

    Article  Google Scholar 

  • Cabrera A, Kozik A, Howad W, Arus P, Iezzoni AF, van der Knaap E (2009) Development and bin mapping of a Rosaceae conserved ortholog set (COS) of markers. BMC Genom 10:562

    Article  Google Scholar 

  • Chapman MA, Chang J, Weisman D, Kesseli RV, Burke JM (2007) Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae). Theor Appl Genet 115:747–755

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Wu J, Fang L, Wang X (2012) Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Front Plant Sci 3:198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng F, Mandakova T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa. Plant Cell 25:1541–1554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S, Yun DJ, Bressan RA, Zhu JK, Bohnert HJ, Cheeseman JM (2011) The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 43:913–918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Economic Research Service USDA (2008) Vegetables and melons outlook. http://www.ers.usda.gov/Publications/VGS/Tables/World.pdf

  • Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736

    CAS  PubMed  Google Scholar 

  • Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov AA, Schneeberger K, Spannagl M, Wang X, Yang L, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KF, Van de Peer Y, Grigoriev IV, Nordborg M, Weigel D, Guo YL (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang S, Deng L, Guan M, Li J, Lu K, Wang H, Fu D, Mason A, Liu S, Hua W (2013) Identification of genome-wide single nucleotide polymorphisms in allopolyploid crop Brassica napus. BMC Genom 14:717

    Article  CAS  Google Scholar 

  • Kim B, Yu H, Park S, Shin J, Oh M, Kim N, Mun J (2012) Identification and profiling of novel microRNAs in the Brassica rapa genome based on small RNA deep sequencing. BMC Plant Biol 12:218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krutovsky KV, Troggio M, Brown GR, Jermstad KD, Neale DB (2004) Comparative mapping in the Pinaceae. Genetics 168:447–461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed Central  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Li F, Hasegawa Y, Saito M, Shirasawa S, Fukushima A, Ito T, Fujii H, Kishitani S, Kitashiba H, Nishio T (2011) Extensive chromosome homoeology among Brassiceae species were revealed by comparative genetic mapping with high-density EST-based SNP markers in radish (Raphanus sativus L.). DNA Res 18:401–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liewlaksaneeyanawin C, Zhuang J, Tang M, Farzaneh N, Lueng G, Cullis C, Findlay S, Ritland CE, Bohlmann J, Ritland K (2008) Identification of COS markers in the Pinaceae. Tree Genet Genomes 5:247–255

    Article  Google Scholar 

  • Lü N, Yamane K, Ohnishi O (2008) Genetic diversity of cultivated and wild radish and phylogenetic relationships among Raphanus and Brassica species revealed by the analysis of trnK/matK sequence. Breed Sci 58:15–22

    Article  Google Scholar 

  • Lysak M, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103:5224–5229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mun J-H, Kwon S, Yang T, Seol Y, Jin M, Kim J, Lim M, Kim J, Baek S, Choi B, Yu H, Kim D, Kim N, Lim K, Lee S, Hahn J, Lim Y, Bancroft I, Park B (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111

    Article  PubMed Central  PubMed  Google Scholar 

  • Nelson MN, Parkin IA, Lydiate DJ (2011) The mosaic of ancestral karyotype blocks in the Sinapis alba L. genome. Genome 54:33–41

    Article  CAS  PubMed  Google Scholar 

  • Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using intron polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genom 9:113

    Article  Google Scholar 

  • Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, Confolent C, Bortolini F, Praud S, Murigneux A, Charmet G, Salse J (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics 9:473–484

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Shirasawa K, Oyama M, Hirakawa H, Sato S, Tabata S, Fujioka T, Kimizuka-Takagi C, Sasamoto S, Watanabe A, Kato M, Kishida Y, Kohara M, Takahashi C, Tsuruoka H, Wada T, Sakai T, Isobe S (2011) An EST-SSR linkage map of Raphanus sativus and comparative genomics of the Brassicaceae. DNA Res 18:221–232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Slotte T, Hazzouri K, Ågren J, Koenig D, Maumus F, Guo Y, Steige K, Platts A, Escobar J, Newman L, Wang W, Mandáková T, Vello E, Smith L, Henz S, Steffen J, Takuno S, Brandvain Y, Coop G, Andolfatto P, Hu T, Blanchette M, Clark R, Quesneville H, Nordborg M, Gaut B, Lysak M, Jenkins J, Grimwood J, Chapman J, Prochnik S, Shu S, Rokhsar D, Schmutz J, Weigel D, Wright S (2013) The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nat Genet 45:831–835

    Article  CAS  PubMed  Google Scholar 

  • Song KM, Osborn TC, Williams PH (1988) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs): 2. Preliminary analysis of subspecies within B. rapa (syn. campestris) and B. oleracea. Theor Appl Genet 76:593–600

    CAS  PubMed  Google Scholar 

  • Song K, Osborn TC, Williams PH (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs): 3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). Theor Appl Genet 79:497–506

    CAS  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

  • The Brassica rapa Genome Sequencing Project Consortium (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

  • Thormann CE, Ferreira ME, Camargo LE, Tivang JG, Osborn TC (1994) Comparison of RFLP and RAPD markers to estimating genetic relationships within and among cruciferous species. Theor Appl Genet 88:973–980

    CAS  PubMed  Google Scholar 

  • Timms L, Jimenez R, Chase M, Lavelle D, McHale L, Kozik A, Lai Z, Heesacker A, Knapp S, Rieseberg L, Michelmore R, Kesseli R (2006) Analyses of synteny between Arabidopsis thaliana and species in the Asteraceae reveal a complex network of small syntenic segments and major chromosomal rearrangements. Genetics 173:2227–2235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Ooijen JW (2006) JoinMap® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma B. V, Wageningen

    Google Scholar 

  • Warwick S, Black L (1991) Molecular systematics of Brassica and allied genera (Subtribe Brassicinae, Brassiceae)—chloroplast genome and cytodeme congruence. Theor Appl Genet 82:81–92

    CAS  PubMed  Google Scholar 

  • Warwick S, Black L (1997) Phylogenetic implications of chloroplast DNA restriction site variation in subtribes Raphaninae and Cakilinae (Brassicaceae, tribe Brassiceae). Canadian J Bot 75:960–973

    Article  Google Scholar 

  • Wu F, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M, Jahn MM, Tanksley SD (2009a) A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor Appl Genet 118:1279–1293

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Eannetta NT, Xu Y, Tanksley SD (2009b) A detailed synteny map of the eggplant genome based on conserved ortholog set II (COSII) markers. Theor Appl Genet 118:927–935

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Eannetta NT, Xu Y, Plieske J, Ganal M, Pozzi C, Bakaher N, Tanksley SD (2010) COSII genetic maps of two diploid Nicotiana species provide a detailed picture of synteny with tomato and insights into chromosome evolution in tetraploid N. tabacum. Theor Appl Genet 120:809–827

    Article  PubMed  Google Scholar 

  • Wu HJ, Zhang Z, Wang JY, Oh DH, Dassanayake M, Liu B, Huang Q, Sun HX, Xia R, Wu Y, Wang YN, Yang Z, Liu Y, Zhang W, Zhang H, Chu J, Yan C, Fang S, Zhang J, Wang Y, Zhang F, Wang G, Lee SY, Cheeseman JM, Yang B, Li B, Min J, Yang L, Wang J, Chu C, Chen SY, Bohnert HJ, Zhu JK, Wang XJ, Xie Q (2012) Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci USA 109:12219–12224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Yang YW, Lai KN, Tai PY, Ma DP, Li WH (1999) Molecular phylogenetic studies of Brassica, Rrippa, Arabidopsis and allied genera based on the internal transcribed spacer region of 18S–25S rDNA. Mol Phylogenet Evol 13:455–462

    Article  CAS  PubMed  Google Scholar 

  • Yang YW, Tai PY, Chen Y, Li WH (2002) A study of the phylogeny of Brassica rapa, B. nigra, Raphanus sativus, and their related genera using noncoding regions of chloroplast DNA. Mol Phylogene Evol 23:268–275

    Article  CAS  Google Scholar 

  • Yang R, Jarvis DE, Chen H, Beilstein MA, Grimwood J, Jenkins J, Shu S, Prochnik S, Xin M, Ma C, Schmutz J, Wing RA, Mitchell-Olds T, Schumaker KS, Wang X (2013) The reference genome of the halophytic plant Eutrema salsugineum. Front Plant Sci 4:46

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Next-Generation Biogreen21 program (PJ008019), Rural Development Administration, Korea to HJY and 2013 Research Fund of Myongji University to JHM. We thank Dr. Shengyi Liu (Oil Crops Research Institute of CAAS, China) for kindly providing sequence information of Brassica oleracea, Sin-Gi Park (National Academy of Agricultural Science of RDA, Korea) for bioinformatics support, and Dr. Suhyoung Park (National Institute of Horticultural and Herbal Science of RDA, Korea) for providing plant material.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments complied with current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hee-Ju Yu or Jeong-Hwan Mun.

Additional information

Communicated by Isobel Parkin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 5273 kb)

Supplementary material 2 (DOCX 51 kb)

Supplemental Fig. S1 Functional classification of the Brassica COS genes based on gene ontology mapping using TAIR database. GO of whole At genes was compared as control and Z test was used to examine statistical analysis. A. Cellular component categories. B. Molecular function categories. C. Biological process categories.

Supplemental Fig. S2 PCR amplification of six COS genes in selected species of Brassicaceae. At, A. thaliana; Rs, R. sativus; A, B. rapa (A genome); B, B. nigra (B genome); C, B. olearacea (C genome); AB, B. juncea (AB genome); AC, B. napus (AC genome); BC, B. carinata (BC genome); A + B, genomic DNA mixture of A and B; A + C, genomic DNA mixture of A and C; B + C, genomic DNA mixture of B and C.

Supplemental Fig. S3 Phylogenetic tree of 13 species of Brassicaceae. Tree was generated using MEGA5 program by Maximum Likelihood analysis of COS0015, COS245, and COS566 genes. The stability of tree nodes was tested by bootstrap analysis with 1,000 replicates. Bootstrap values are indicated on the branches and the branch length reflects the estimated number of substitutions per 100 sites. A local cluster of 5 wild Mediterranean Brassica species, Br, and Bo is indicated in a green box.

Supplemental Fig. S4 Circos diagram of syntenic genome block pairs between Rs and Br. Conserved orthologous blocks in Rs are plotted against their syntenic counterpart in Br. The numbers in Rs linkage groups indicate genetic distance in cM whereas those in Br chromosomes indicate 5 Mb intervals. The syntenic counterparts of conserved blocks between the genomes are interconnected by colored lines. Br, B. rapa; Rs, R. sativus.

Supplemental Fig. S5 Circos diagram of COS gene pairs between Rs and Br corresponding eight ancient chromosomes. A. AK1, B. AK2, C. AK3, D. AK4, E. AK5, F. AK6, G. AK7, H. AK8. Conserved orthologous genes in Rs are plotted against their syntenic counterpart in Br. The numbers in Rs linkage groups indicate genetic distance in cM whereas those in Br chromosomes indicate 5 Mb intervals. The syntenic counterparts of conserved gene pair between the genomes are interconnected by colored lines. The line colors indicate three differentially fractionated subgenome types in the Br genome. Br, B. rapa; Rs, R. sativus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, YM., Chung, WH., Chung, H. et al. Comparative analysis of the radish genome based on a conserved ortholog set (COS) of Brassica . Theor Appl Genet 127, 1975–1989 (2014). https://doi.org/10.1007/s00122-014-2354-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2354-3

Keywords

Navigation