Skip to main content
Log in

Genome-wide investigation of genetic changes during modern breeding of Brassica napus

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Considerable genome variation had been incorporated within rapeseed breeding programs over past decades.

Abstract

In past decades, there have been substantial changes in phenotypic properties of rapeseed as a result of extensive breeding effort. Uncovering the underlying patterns of allelic variation in the context of genome organisation would provide knowledge to guide future genetic improvement. We assessed genome-wide genetic changes, including population structure, genetic relatedness, the extent of linkage disequilibrium, nucleotide diversity and genetic differentiation based on F ST outlier detection, for a panel of 472 Brassica napus inbred accessions using a 60 k Brassica Infinium® SNP array. We found genetic diversity varied in different sub-groups. Moreover, the genetic diversity increased from 1950 to 1980 and then remained at a similar level in China and Europe. We also found ~6–10 % genomic regions revealed high F ST values. Some QTLs previously associated with important agronomic traits overlapped with these regions. Overall, the B. napus C genome was found to have more high F ST signals than the A genome, and we concluded that the C genome may contribute more valuable alleles to generate elite traits. The results of this study indicate that considerable genome variation had been incorporated within rapeseed breeding programs over past decades. These results also contribute to understanding the impact of rapeseed improvement on available genome variation and the potential for dissecting complex agronomic traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbadi A, Leckband G (2011) Rapeseed breeding for oil content, quality, and sustainability. Eur J Lipid Sci Technol 113:1198–1206

    Article  CAS  Google Scholar 

  • Albrechtsen A, Nielsen FC, Nielsen R (2010) Ascertainment biases in SNP chips affect measures of population divergence. Mol Biol Evol 27:2534–2547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Allender CJ, King GJ (2010) Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol 10:54

    Article  PubMed Central  PubMed  Google Scholar 

  • Bancroft I, Morgan C, Fraser F, Higgins J, Wells R, Clissold L, Baker D, Long Y, Meng J, Wang X, Liu S, Trick M (2011) Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nat Biotechnol 29:762–766

    Article  CAS  PubMed  Google Scholar 

  • Becker HC, Engqvist GM, Karlsson B (1995) Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theor Appl Genet 91:62–67

    Article  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Bus A, Korber N, Snowdon RJ, Stich B (2011) Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theor Appl Genet 123:1413–1423

    Article  PubMed  Google Scholar 

  • Cai D, Xiao Y, Yang W, Ye W, Wang B, Younas M, Wu J, Liu K (2014) Association mapping of six yield-related traits in rapeseed (Brassica napus L.). Theor Appl Genet 127:85–96

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Tian F, Wang N, Jiang C, Lin B, Xia W, Shi J, Long Y, Zhang C, Meng J (2010) Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits in Brassica napus. J Genet Genomics 37:231–240

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen ZJ, Pikaard CS (1997) Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Natl Acad Sci USA 94:3442–3447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen S, Nelson MN, Ghamkhar K, Fu T, Cowling WA (2008) Divergent patterns of allelic diversity from similar origins: the case of oilseed rape (Brassica napus L.) in China and Australia. Genome 51:1–10

    Article  PubMed  Google Scholar 

  • Delourme R, Chèvre AM, Brun H, Rouxel T, Balesdent MH, Dias JS, Salisbury P, Renard M, Rimmer SR (2006) Major gene and polygenic resistance to leptosphaeria maculans in oilseed rape (Brassica napus). Eur J Plant Pathol 114:41–52

    Article  Google Scholar 

  • Duran C, Eales D, Marshall D, Imelfort M, Stiller J, Berkman PJ, Clark T, McKenzie M, Appleby N, Batley J, Basford K, Edwards D (2010) Future tools for association mapping in crop plants. Genome 53:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Ecke W, Clemens R, Honsdorf N, Becker HC (2010) Extent and structure of linkage disequilibrium in canola quality winter rapeseed (Brassica napus L.). Theor Appl Genet 120:921–931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fu Y-B, Somers DJ (2009) Genome-wide reduction of genetic diversity in wheat breeding. Crop Sci 49:161–168

    Article  Google Scholar 

  • Georges M (1997) QTL mapping to QTL cloning: mice to the rescue. Genome Res 7:663–665

    CAS  PubMed  Google Scholar 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Wang D, Guo Z, Beavis WD (2013) Family-based association mapping in crop species. Theor Appl Genet 126:1419–1430

    Article  PubMed  Google Scholar 

  • Harper AL, Trick M, Higgins J, Fraser F, Clissold L, Wells R, Hattori C, Werner P, Bancroft I (2012) Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat Biotechnol 30:798–802

    Article  CAS  PubMed  Google Scholar 

  • Hasan M, Friedt W, Pons-Kuhnemann J, Freitag NM, Link K, Snowdon RJ (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus). Theor Appl Genet 116:1035–1049

    Article  CAS  PubMed  Google Scholar 

  • Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA 103:16666–16671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiao Y, Zhao H, Ren L, Song W, Zeng B, Guo J, Wang B, Liu Z, Chen J, Li W, Zhang M, Xie S, Lai J (2012) Genome-wide genetic changes during modern breeding of maize. Nat Genet 44:812–815

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, Ossowski S, Ecker JR, Weigel D, Nordborg M (2007) Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet 39:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, Xiang Z, Song W, Ying K, Zhang M, Jiao Y, Ni P, Zhang J, Li D, Guo X, Ye K, Jian M, Wang B, Zheng H, Liang H, Zhang X, Wang S, Chen S, Li J, Fu Y, Springer NM, Yang H, Wang J, Dai J, Schnable PS, Wang J (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42:1027–1030

    Article  CAS  PubMed  Google Scholar 

  • Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre DD (1989) Increased potassium absorption confers resistance to group IA cations in rubidium-selected suspension cells of Brassica napus. Plant Physiol 91:1460–1466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li M, Liu J, Wang Y, Yu L, Meng J (2007) Production of partial new-typed Brassica napus by introgression of genomic components from B. rapa and B. carinata. J Genet Genomics 34:460–468

    Article  CAS  PubMed  Google Scholar 

  • Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, Harper AL, Trick M, Liu S, Gao G, Wang N, Yan G, Qiao J, Li J, Li H, Xiao X, Zhang T, Wu X (2014) Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res. doi:10.1093/dnares/dsu002

  • Lu HY, Liu XF, Wei SP, Zhang YM (2011) Epistatic association mapping in homozygous crop cultivars. PLoS One 6:e17773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCouch SR, Doerge RW (1995) QTL mapping in rice. Trends Genet 11:482–487

    Article  CAS  PubMed  Google Scholar 

  • McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE, Stokowski R, Ballinger DG, Frazer KA, Cox DR, Padhukasahasram B, Bustamante CD, Weigel D, Mackill DJ, Bruskiewich RM, Ratsch G, Buell CR, Leung H, Leach JE (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA 106:12273–12278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mei J, Li Q, Qian L, Fu Y, Li J, Frauen M, Qian W (2011) Genetic investigation of the origination of allopolyploid with virtually synthesized lines: application to the C subgenome of Brassica napus. Heredity 106:955–961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morrell PL, Buckler ES, Ross-Ibarra J (2011) Crop genomics: advances and applications. Nat Rev Genet 13:85–96

    PubMed  Google Scholar 

  • Motsinger AA, Reif DM, Dudek SM, Ritchie MD (2006) Understanding the evolutionary process of grammatical evolution neural networks for feature selection in genetic epidemiology. Proc IEEE Symp Comput Intell Bioinform Comput Biol 2006:1–8

    Google Scholar 

  • Nei M, Miller JC (1990) A simple method for estimating average number of nucleotide substitutions within and between populations from restriction data. Genetics 125:873–879

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nicholson G, Smith AV, Jónsson F, Gstafsson Ã, Stefánsson K, Donnelly P (2002) Assessing population differentiation and isolation from single-nucleotide polymorphism data. J R Stat Soc 64:695–715

    Article  Google Scholar 

  • Porto-Neto LR, Lee SH, Lee HK, Gondro C (2013) Detection of signatures of selection using FST. Methods Mol Biol 1019:423–436

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qian W, Meng J, Li M, Frauen M, Sass O, Noack J, Jung C (2006) Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B. napus L.), with emphasis on the evolution of Chinese rapeseed. Theor Appl Genet 113:49–54

    Article  CAS  PubMed  Google Scholar 

  • Richards E, Reichardt M, Rogers S (2001) Preparation of genomic DNA from plant tissue. Curr Protoc Mol Biol, chapter 2, unit 2.3

  • Rygulla W, Snowdon RJ, Eynck C, Koopmann B, von Tiedemann A, Luhs W, Friedt W (2007) Broadening the genetic basis of Verticillium longisporum resistance in Brassica napus by interspecific hybridization. Phytopathology 97:1391–1396

    Article  CAS  PubMed  Google Scholar 

  • Shahidi F (1990) Canola and rapeseed: production, chemistry, nutrition and processing technology. Van Nostrand Reinhold, New York, pp 1–10

    Book  Google Scholar 

  • Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sim SC, Van Deynze A, Stoffel K, Douches DS, Zarka D, Ganal MW, Chetelat RT, Hutton SF, Scott JW, Gardner RG, Panthee DR, Mutschler M, Myers JR, Francis DM (2012) High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS One 7:e45520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song K, Osborn TC (1992) Polyphyletic origins of Brassica napus: new evidence based on organelle and nuclear RFLP analyses. Genome 35:992–1001

    Article  Google Scholar 

  • Stefansson BR, Hougen FW (1964) Selection of rape plants (Brassica napus) with seed oil practically free from erucic acid. Can J Plant Sci 44:359–364

    Article  CAS  Google Scholar 

  • Suzuki Y (2010) Statistical methods for detecting natural selection from genomic data. Genes Genet Syst 85:359–376

    Article  PubMed  Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Vaz Patto MC, Rubiales D, Martin A, Hernandez P, Lindhout P, Niks RE, Stam P (2003) QTL mapping provides evidence for lack of association of the avoidance of leaf rust in Hordeum chilense with stomata density. Theor Appl Genet 106:1283–1292

    CAS  PubMed  Google Scholar 

  • Wang J, Chen Z, Du J, Sun Y, Liang A (2005) Novel insect resistance in Brassica napus developed by transformation of chitinase and scorpion toxin genes. Plant Cell Rep 24:549–555

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Wang Y, Tian F, King GJ, Zhang C, Long Y, Shi L, Meng J (2008) A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol 180:751–765

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Long Y, Wu B, Liu J, Jiang C, Shi L, Zhao J, King GJ, Meng J (2009) The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol 9:271

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang N, Shi L, Tian F, Ning H, Wu X, Long Y, Meng J (2010) Assessment of FAE1 polymorphisms in three Brassica species using EcoTILLING and their association with differences in seed erucic acid contents. BMC Plant Biol 10:137

    Article  PubMed Central  PubMed  Google Scholar 

  • Waugh R, Marshall D, Thomas B, Comadran J, Russell J, Close T, Stein N, Hayes P, Muehlbauer G, Cockram J, O’Sullivan D, Mackay I, Flavell A, Agoueb, BarleyCap, Ramsay L (2010) Whole-genome association mapping in elite inbred crop varieties. Genome 53:967–972

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Cai G, Tu J, Li L, Liu S, Luo X, Zhou L, Fan C, Zhou Y (2013) Identification of QTLs for resistance to sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS One 8:e67740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu Q, Zheng X, Luo J, Gaut BS, Ge S (2007) Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 24:875–888

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese National Basic Research and Development Program (2011CB109302), National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (2013BAD01B03 and 2011BAD35B09) and Crop Germplasm Protection Project (NB2011-2130135). GK is supported in part by the Chutian Scholar program of Hubei province.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the study comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Wu.

Additional information

Communicated by Michael Gore.

N. Wang and F. Li have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

LD decay of rapeseed chromosomes A1 to A9 (TIFF 2292 kb)

LD decay of rapeseed chromosomes A10, C1 to C8 (TIFF 2482 kb)

LD decay of rapeseed chromosome C9 (TIFF 257 kb)

122_2014_2343_MOESM4_ESM.tif

Genomic distribution of putative artificial selection among sub-populations classified by five breeding regions. Signatures of putative artificial selection were measured by FST based on calculation of genetic differentiation among sub-populations five from five breeding regions. From the top to bottom, these five panels are corresponding to sub-populations of Australia, China, Europe, North America and Northeast Asia, respectively. FST was smoothed with a 0.5 Mb window and a 50 kb siding bin (see M&M). The red dash lines indicate value of 1st percentile of the empirical distribution of high FST-windows. Chromosomes were differed by black and gray plots sequentially (TIFF 1588 kb)

122_2014_2343_MOESM5_ESM.tif

Genomic distribution of putative artificial selection among sub-populations classified by three growth types. From the top to bottom, these three panels are corresponding to sub-populations of spring, semi-winter and winter, respectively. All other information is similar with Figure S4 (TIFF 1226 kb)

122_2014_2343_MOESM6_ESM.tif

Genomic distribution of putative artificial selection among sub-populations classified by five breeding periods in China. From the top to the bottom, these five panels are corresponding to sub-populations of 1950-1970, 1971-1980, 1981-1990, 1991-2000 and 2001-2011, respectively. All other information is similar with Figure S4. (TIFF 1723 kb)

122_2014_2343_MOESM7_ESM.tif

Genomic distribution of putative artificial selection among sub-populations classified by four breeding period in Europe. From the top to the bottom, these four panels are corresponding to sub-populations of 1950-1970, 1971-1980, 1981-1990 and 1991-2000, respectively. All other information is similar with Figure S4. (TIFF 1260 kb)

Accessions and their classification in this study (XLSX 29 kb)

LD decay for all 19 chromosomes and whole genome in rapeseed (XLSX 10 kb)

Change of nucleotide diversity between 1950-1970 and 1971-1980 in China and Europe (XLSX 9 kb)

Genomic regions with outlier FST windows based on sub-populations classified by breeding region (XLSX 14 kb)

Genomic regions with outlier FST windows based on sub-populations classified by growth type (XLSX 13 kb)

122_2014_2343_MOESM13_ESM.xlsx

Genomic regions with outlier FST windows based on sub-populations classified by different breeding periods in China and Europe (XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Li, F., Chen, B. et al. Genome-wide investigation of genetic changes during modern breeding of Brassica napus . Theor Appl Genet 127, 1817–1829 (2014). https://doi.org/10.1007/s00122-014-2343-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2343-6

Keywords

Navigation