Skip to main content
Log in

Next-generation sequencing based genotyping, cytometry and phenotyping for understanding diversity and evolution of guinea yams

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Genotyping by sequencing (GBS) is used to understand the origin and domestication of guinea yams, including the contribution of wild relatives and polyploidy events to the cultivated guinea yams.

Abstract

Patterns of genetic diversity within and between two cultivated guinea yams (Dioscorea rotundata and D. cayenensis) and five wild relatives (D. praehensilis, D. mangenotiana, D. abyssinica, D. togoensis and D. burkilliana) were investigated using next-generation sequencing (genotyping by sequencing, GBS). Additionally, the two cultivated species were assessed for intra-specific morphological and ploidy variation. In guinea yams, ploidy level is correlated with species identity. Using flow cytometry a single ploidy level was inferred across D. cayenensis (3x, N = 21), D. praehensilis (2x, N = 7), and D. mangenotiana (3x, N = 5) accessions, whereas both diploid and triploid (or aneuploid) accessions were present in D. rotundata (N = 11 and N = 32, respectively). Multi-dimensional scaling and maximum parsimony analyses of 2,215 SNPs revealed that wild guinea yam populations form discrete genetic groupings according to species. D. togoensis and D. burkilliana were most distant from the two cultivated yam species, whereas D. abyssinica, D. mangenotiana, and D. praehensilis were closest to cultivated yams. In contrast, cultivated species were genetically less clearly defined at the intra-specific level. While D. cayenensis formed a single genetic group, D. rotundata comprised three separate groups consisting of; (1) a set of diploid individuals genetically similar to D. praehensilis, (2) a set of diploid individuals genetically similar to D. cayenensis, and (3) a set of triploid individuals. The current study demonstrates the utility of GBS for assessing yam genomic diversity. Combined with morphological and biological data, GBS provides a powerful tool for testing hypotheses regarding the evolution, domestication and breeding of guinea yams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aidoo R, Nimoh F, Bakang J-EA, Ohene-Yankyera K, Fialor SC, Abaidoo RC (2011) Economics of small-scale seed yam production in Ghana: implications for commercialisation. J Sustain Dev Africa 13:65–78

    Article  Google Scholar 

  • Akoroda MO (1985) Pollination management for controlled hybridization of white yam. Sci Hortic 25:201–209

    Article  Google Scholar 

  • Amusa N, Adegbite A, Mohammed S, Baiyewu R (2003) Yam diseases and its management in Nigeria. Afr J Biotechnol 2:497–502

    Google Scholar 

  • Arnau G, Nemorin A, Maledon E, Abraham K (2009) Revision of ploidy status of Dioscorea alata L. (Dioscoreaceae) by cytogenetic and microsatellite segregation analysis. Theor Appl Genet 118:1239–1249

    Article  CAS  PubMed  Google Scholar 

  • Babil PK, Irie K, Shiwachi H, Tun Y, Toyohara H, Fujimaki H (2010) Ploidy variation and their effects on Leaf and stoma traits of water yam (Dioscorea alata L.) collected in Myanmar. Trop Agric Dev 54:132–139

    Google Scholar 

  • Bahuchet S, McKey D, de Garine I (1991) Wild yams revisited: is independence from agriculture possible for rain forest hunter-gatherers? Hum Ecol 19:213–243

    Article  Google Scholar 

  • Baimey H, Coyne D, Labuschagne N (2006) Effect of fertilizer application on yam nematode (Scutellonema bradys) multiplication and consequent damage to yam (Dioscorea spp.) under field and storage conditions in Benin. Int J Pest Manag 52:63–70

    Article  Google Scholar 

  • Bouckaert RR (2010) DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26:1372–1373

    Article  CAS  PubMed  Google Scholar 

  • Bousalem M, Arnau G, Hochu I, Arnolin R, Viader V, Santoni S, David J (2006) Microsatellite segregation analysis and cytogenetic evidence for tetrasomic inheritance in the American yam Dioscorea trifida and a new basic chromosome number in the Dioscoreae. Theor Appl Genet 113:439–451

    Article  CAS  PubMed  Google Scholar 

  • Burkill IH (1960) The organography and the evolution of Dioscoreaceae, the family of the yams. J Linn Soc Lond Bot 56:319–412

    Article  Google Scholar 

  • Cornet D, Deu M, Baco M, Agbangla A, Duval M, Noyer J (2010) Impact of farmer selection on yam genetic diversity. Conserv Genet 11:2255–2265

    Article  Google Scholar 

  • Coursey DG (1967) Yams. An account of the nature, origins, cultivation and utilisation of the useful members of the Dioscoreaceae. Longmans, Green and Co. Ltd, London

    Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, Group GPA (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dansi A, Mignouna H, Zoundjihekpon J, Sangare A, Asiedu R, Quin F (1999) Morphological diversity, cultivar groups and possible descent in the cultivated yams (Dioscorea cayenensis/D. rotundata) complex in Benin Republic. Genet Resour Crop Evol 46:371–388

    Article  Google Scholar 

  • Dansi A, Mignouna HD, Pillay M, Zok S (2001) Ploidy variation in the cultivated yams (Dioscorea cayenensisDioscorea rotundata complex) from Cameroon as determined by flow cytometry. Euphytica 119:301–307

    Article  Google Scholar 

  • Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology 1:460–483

    Article  PubMed Central  PubMed  Google Scholar 

  • Development Core Team R (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria

    Google Scholar 

  • Dumet D, Ogunsola D (2008) Regeneration guidelines: yams, crop specific regeneration guidelines. In: Dulloo ME, Thormann I, Jorge MA, Hanson J (eds) CGIAR System-wide Genetic Resource Programme, Rome

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Emshwiller E (2002) Ploidy levels among species in the ‘Oxalis tuberosa Alliance’ as inferred by flow cytometry. Ann Bot 89:741–753

    Article  PubMed  Google Scholar 

  • FAOSTAT (2013) Statistical data base. FAO, Rome

    Google Scholar 

  • Gamiette F, Bakry F, Ano G (1999) Ploidy determination of some yam species (Dioscorea spp.) by flow cytometry and conventional chromosomes counting. Genet Resour Crop Evol 46:19–27

    Article  Google Scholar 

  • Govaerts R, Wilkin P, Saunders RMK (2007) World checklist of Dioscoreales. Yams and their allies. The Board of Trustees of the Royal Botanic Gardens, Kew, London, pp 1–65

    Google Scholar 

  • Hamon P, Toure B (1990) Characterization of traditional yam varieties belonging to the Dioscorea cayenensisrotundata complex by their isozymic patterns. Euphytica 46:101–107

    Article  Google Scholar 

  • Hamon P, Brizard J-P, Zoundjihékpon J, Duperray C, Borgel A (1992) Etude des index d’ ADN de huit ignames (Dioscorea sp.) par cytométrie en flux. Can J Bot 70:996–1000

    Article  Google Scholar 

  • IPGRI/IITA (1997) Descriptors for yam (Dioscorea spp.). International Institute of Tropical Agriculture, Ibadan, Nigeria/International Plant Genetic Resources Institute, Rome, Italy

  • Junier T, Zdobnov EM (2010) The Newick utilities: high-throughput phylogenetic tree processing in the Unix shell. Bioinformatics 26:1669–1670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinf 9:559

    Article  Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18

    Google Scholar 

  • Lebot V (2009) Tropical root and tuber crops: cassava, sweet potato, yams and aroids. CABI Publishers, Wallingford

    Google Scholar 

  • Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mengesha W, Demissew S, Fay M, Smith R, Nordal I, Wilkin P (2013) Genetic diversity and population structure of Guinea yams and their wild relatives in South and South West Ethiopia as revealed by microsatellite markers. Genet Resour Crop Evol 60:529–541

    Article  Google Scholar 

  • Mignouna HD, Dansi A, Zok S (2002) Morphological and isozymic diversity of the cultivated yams (Dioscorea cayenensis/Dioscorea rotundata complex) of Cameroon. Genet Resour Crop Evol 49:21–29

    Article  Google Scholar 

  • Mignouna HD, Abang MM, Fagbemi SA (2003) A comparative assessment of molecular marker assays (AFLP, RAPD and SSR) for white yam (Dioscorea rotundata) germplasm characterization. Ann Appl Biol 142:269–276

    Article  CAS  Google Scholar 

  • Mignouna HD, Abang MM, Asiedu R (2007) Yams. In: Kole C (ed) Genome mapping and molecular breeding: pulses, sugar and tuber crops. Springer, Berlin, Heidelberg, pp 271–296

  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110:453–458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nemorin A, Abraham K, David J, Arnau G (2012) Inheritance pattern of tetraploid Dioscorea alata and evidence of double reduction using microsatellite marker segregation analysis. Mol Breed 30:1657–1667

    Article  Google Scholar 

  • Obidiegwu J, Loureiro J, Ene-Obong E, Rodriguez E, Kolesnikova-Allen M, Santos C, Mouneke C, Asiedu R (2009) Ploidy level studies on the Dioscorea cayenensis/Dioscore rotundata complex core set. Euphytica 169:319–326

    Article  Google Scholar 

  • Onyilagha JC, Lowe J (1986) Studies on the relationship of Dioscorea cayenensis and Dioscorea rotundata cultivars. Euphytica 35:733–739

    Article  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Gen 5:92–102

    Article  CAS  Google Scholar 

  • Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink J-L (2012a) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Gen 5:103–113

    Article  CAS  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012b) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria. http://www.R-project.org/

  • Ramser J, Weising K, Terauchi R, Kahl G, Lopez-Peralta C, Terhalle W (1997) Molecular marker based taxonomy and phylogeny of Guinea yam (Dioscorea rotundataD. cayenensis). Genome/National Res Council Canada = Genome/Conseil national de recherches Canada 40:903–915

    Article  CAS  Google Scholar 

  • Sato H (2001) The potential of edible wild yams and yam-like plants as a staple food resource in the African tropical rain forest. Afr Study Monogr Suppl Issue 26:123–134

    Google Scholar 

  • Scarcelli N, Dainou O, Agbangla C, Tostain S, Pham JL (2005) Segregation patterns of isozyme loci and microsatellite markers show the diploidy of African yam Dioscorea rotundata (2n = 40). Theor Appl Genet 111:226–232

    Article  CAS  PubMed  Google Scholar 

  • Scarcelli N, Tostain S, Mariac C, Agbangla C, Da O, Berthaud J, Pham JL (2006a) Genetic nature of yams (Dioscorea sp.) domesticated by farmers in Benin (West Africa). Genet Resour Crop Evol 53:121–130

    Article  CAS  Google Scholar 

  • Scarcelli N, Tostain S, Vigouroux Y, Agbangla C, DaÏNou O, Pham JL (2006b) Farmers’ use of wild relative and sexual reproduction in a vegetatively propagated crop. The case of yam in Benin. Mol Ecol 15:2421–2431

    Article  CAS  PubMed  Google Scholar 

  • Scarcelli N, Couderc M, Baco M, Egah J, Vigouroux Y (2013) Clonal diversity and estimation of relative clone age: application to agrobiodiversity of yam (Dioscorea rotundata). BMC Plant Biol 13:178

    Article  PubMed Central  PubMed  Google Scholar 

  • Spillane C, Gepts P (2001) Evolutionary and genetic perspectives on the dynamics of crop genepools. In: Cooper D, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. CABI, Wallingford, pp 25–70

    Chapter  Google Scholar 

  • Spindel J, Wright M, Chen C, Cobb J, Gage J, Harrington S, Lorieux M, Ahmadi N, McCouch S (2013) Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theoret Appl Genet 126:2699–2716

    Article  CAS  Google Scholar 

  • Tamiru M, Natsume S, Takagi H, Babil PK, Yamanaka S, Lopez-Montes A, Gedil M, Bhattacharjee R, Takagi H, Asiedu R, Terauchi R (2013) Whole genome sequencing of Guinea yam (Dioscorea rotundata). In: First global conference on yam. International Institute of Tropical Agriculture (IITA), Accra, Ghana

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Terauchi R, Chikaleke VA, Thottappilly G, Hahn SK (1992) Origin and phylogeny of Guinea yams as revealed by RFLP analysis of chloroplast DNA and nuclear ribosomal DNA. Theoret Appl Genet 83:743–751

    CAS  Google Scholar 

  • Tortoe C, Johnson P-T, Abbey L, Baidoo E, Anang D, Acquaah SG, Saka E (2012) Sensory properties of pre-treated blast-chilled (Dioscorea rotundata) as a convenience food product. Afr J Food Sci Technol 3:59–65

    Google Scholar 

  • Zamir D (2013) Where have all the crop phenotypes gone? PLoS Biol 11:e1001595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zannou A, Ahanchede A, Struik P, Richard P, Zoundjihekpon J, Tossou R, Vodouhe S (2004) Yam and cowpea diversity management by farmers in the Guinea–Sudan transition zone of Benin. NJAS (Wageningen J Life Sci) 52:393–420

    Article  Google Scholar 

  • Zannou A, Richards P, Struik PC (2006) Knowledge on yam variety development: insights from farmers’ and researchers’ practices. Knowl Manag Dev J 2:30–39

    Google Scholar 

Download references

Acknowledgments

The CGIAR Research Program on Roots, Tubers and Bananas funded this research. Prof. Alexander Dansi provided materials from Benin. Prof. Michael Abberton and Dr. Marc Deletre reviewed the manuscript. GG acknowledges support from the Netherlands Ministry of Foreign Affairs, and PhD fee waiver from the National University of Ireland Galway. CS acknowledges support from Science Foundation Ireland (SFI).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Melaku Gedil or Charles Spillane.

Additional information

Communicated by Ian D. Godwin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girma, G., Hyma, K.E., Asiedu, R. et al. Next-generation sequencing based genotyping, cytometry and phenotyping for understanding diversity and evolution of guinea yams. Theor Appl Genet 127, 1783–1794 (2014). https://doi.org/10.1007/s00122-014-2339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2339-2

Keywords

Navigation