Skip to main content
Log in

Efficient isolation of ion beam-induced mutants for homoeologous loci in common wheat and comparison of the contributions of Glu-1 loci to gluten functionality

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Ion beam mutations can be efficiently isolated and deployed for functional comparison of homoeologous loci in polyploid plants, and Glu - 1 loci differ substantially in their contribution to wheat gluten functionality.

Abstract

To efficiently conduct genetic analysis, it is beneficial to have multiple types of mutants for the genes under investigation. Here, we demonstrate that ion beam-induced deletion mutants can be efficiently isolated for comparing the function of homoeologous loci of common wheat (Triticum aestivum). Through fragment analysis of PCR products from M2 plants, ion beam mutants lacking homoeologous Glu-A1, Glu-B1 or Glu-D1 loci, which encode high molecular weight glutenin subunits (HMW-GSs) and affect gluten functionality and end-use quality of common wheat, could be isolated simultaneously. Three deletion lines missing Glu-A1, Glu-B1 or Glu-D1 were developed from the original mutants, with the Glu-1 genomic regions deleted in these lines estimated using newly developed DNA markers. Apart from lacking the target HMW-GSs, the three lines all showed decreased accumulation of low molecular weight glutenin subunits (LMW-GSs) and increased amounts of gliadins. Based on the test data of five gluten and glutenin macropolymer (GMP) parameters obtained with grain samples harvested from two environments, we conclude that the genetic effects of Glu-1 loci on gluten functionality can be ranked as Glu-D1 > Glu-B1 > Glu-A1. Furthermore, it is suggested that Glu-1 loci contribute to gluten functionality both directly (by promoting the formation of GMP) and indirectly (through keeping the balance among HMW-GSs, LMW-GSs and gliadins). Finally, the efficient isolation of ion beam mutations for functional comparison of homoeologous loci in polyploid plants and the usefulness of Glu-1 deletion lines for further studying the contribution of Glu-1 loci to gluten functionality are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

FPC:

Flour protein content

G′:

Elastic modulus

G″:

Viscous modulus

Gli/Glu:

Gliadins/glutenins

GMP:

Glutenin macropolymer

HMW-GS:

High molecular weight glutenin subunit

LMW-GS:

Low molecular weight glutenin subunit

NILs:

Near isogenic lines

RP-HPLC:

Reverse-phase high-performance liquid chromatography

SDS:

Sodium dodecyl sulfate

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SDS-SV:

SDS-sedimentation volume

SIG:

Swelling index of glutenin

STS:

Sequence-tagged site

TGW:

Thousand grain weight

References

  • Akhunov ED, Sehgal S, Liang HQ, Wang SC, Akhunova AR, Kaur G, Li WL, Forrest KL, See D, Šimková H, Ma YQ, Hayden MJ, Luo MC, Faris JD, Dolezel J, Gill BS (2013) Comparative analysis of syntenic genes in grass genomes reveals accelerated rates of gene structure and coding sequence evolution in polyploid wheat. Plant Physiol 161:252–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Al-kaff N, Knight E, Bertin I, Foote T, Hart N, Griffiths S, Moor E (2008) Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum with deletion mutants and expression profiling. Ann Bot 101:863–872

    Article  CAS  PubMed  Google Scholar 

  • Alonso JM, Ecker JR (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat Rev Genet 7:524–536

    Article  CAS  PubMed  Google Scholar 

  • American Association of Cereal Chemists International (AACCI) (2010) Approved Methods of Analysis, 11th edn. AACCI press, St. Paul

    Google Scholar 

  • Beasley HL, Uthayakumaran S, Stoddard FL, Partridge SJ, Daqiq L, Chong P, Békés F (2002) Synergistic and additive effects of three high molecular weight glutenin subunit loci. II. Effects on wheat dough functionality and end-use quality. Cereal Chem 79:301–307

    Article  CAS  Google Scholar 

  • Becker D, Wieser H, Koehler P, Folck A, Mühling KH, Zörb C (2012) Protein composition and techno-functional properties of transgenic wheat with reduced α-gliadin content obtained by RNA interference. J Appl Bot Food Qual 85:23–33

    CAS  Google Scholar 

  • Blechl AE, Jones HD (2009) Transgenic applications in wheat improvement. In: Carver BF (ed) Wheat Science and Trade. Wiley-Blackwell, Ames, pp 397–435

    Chapter  Google Scholar 

  • Bolle C, Schneider A, Leister D (2011) Perspectives on systematic analyses of gene function in Arabidopsis thaliana: new tools, topics and trends. Curr Genomics 12:1–14

    Article  CAS  PubMed  Google Scholar 

  • Boutros M, Ahringer J (2008) The art and design of genetic screens: RNA interference. Nat Rev Genet 9:554–566

    Article  CAS  PubMed  Google Scholar 

  • Braun HJ, Atlin G, Payne T (2010) Multi-location testing as a tool to identify plant response to global climate change. In: Reynolds MP (ed) Climate Change and Crop Production. CABI Publishers, Wallingford, pp 115–138

    Chapter  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chandler PM, Harding CA (2013) ‘Overgrowth’ mutants in barley and wheat: new alleles and phenotypes of the ‘Green Revolution’ Della gene. J Exp Bot 64:1603–1613

    Article  CAS  PubMed  Google Scholar 

  • Delcour JA, Joye IJ, Pareyt B, Wilderjans E, Brijs K, Lagrain B (2012) Wheat gluten functionality as a quality determinant in cereal-based food products. Annu Rev Food Sci Technol 3:469–492

    Article  CAS  PubMed  Google Scholar 

  • Dixon J, Braun HJ, Kosina P, Crouch J (2009) Wheat Facts and Futures. CIMMYT, Mexico

    Google Scholar 

  • Don C, Lichtendonk W, Plijter JJ, Hamer RJ (2003a) Glutenin macropolymer: a gel formed by glutenin particles. J Cereal Sci 37:1–7

    Article  CAS  Google Scholar 

  • Don C, Lichtendonk WJ, Plijter JJ, Hamer RJ (2003b) Understanding the link between GMP and dough: from glutenin particles in flour towards developed dough. J Cereal Sci 38:157–165

    Article  CAS  Google Scholar 

  • Don C, Mann G, Bekes F, Hamer RJ (2006) HMW-GS affect the properties of glutenin particles in GMP and thus flour quality. J Cereal Sci 44:127–135

    Article  CAS  Google Scholar 

  • Dumur J, Jahier J, Bancel E, Laurière M, Bernard M, Branlard G (2004) Proteomic analysis of aneuploid lines in the homoeologous group 1 of the hexaploid wheat cultivar Courtot. Proteomics 4:2685–2695

    Article  CAS  PubMed  Google Scholar 

  • DuPont FM, Chan R, Lopez R, Vensel WH (2005) Sequential extraction and quantitative recovery of gliadins, glutenins, and other proteins from small samples of wheat flour. J Agric Food Chem 53:1575–1584

    Article  CAS  PubMed  Google Scholar 

  • Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K (2011) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16:77–88

    Article  CAS  PubMed  Google Scholar 

  • Galili G, Levy AA, Feldman M (1986) Gene-dosage compensation of endosperm proteins in hexaploid wheat Triticum aestivum. Proc Natl Acad Sci USA 83:6524–6528

    Article  CAS  PubMed  Google Scholar 

  • Gasperini D, Greenland A, Hedden P, Dreos R, Harwood W, Griffiths S (2012) Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids. J Exp Bot 63:4419–4436

    Article  CAS  PubMed  Google Scholar 

  • Gil-Humanes J, Pistón F, Tollefsen S, Sollid LM, Francisco B (2010) Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference. Proc Natl Acad Sci USA 107:17023–17028

    Article  CAS  PubMed  Google Scholar 

  • Gil-Humanes J, Pistón F, Giménez MJ, Martín A, Francisco B (2012) The introgression of RNAi silencing of γ-gliadins into commercial lines of bread wheat changes the mixing and technological properties of the dough. PLoS ONE 7:e45937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • González-Torralba J, Arazuri S, Jarén C, Arregui LM (2011) Stable quality traits of soft winter wheat under non-limiting nitrogen conditions. Crop Sci 51:2820–2828

    Article  Google Scholar 

  • Hase Y, Tanaka A, Baba T, Watanabe H (2000) FRL1 is required for petal and sepal development in Arabidopsis. Plant J 24:21–32

    Article  CAS  PubMed  Google Scholar 

  • Hase Y, Trung KH, Matsunaga T, Tanaka A (2006) A mutation in the uvi4 gene promotes progression of endo-reduplication and confers increased tolerance towards ultraviolet B light. Plant J 46:317–326

    Article  CAS  PubMed  Google Scholar 

  • Hegarty MJ, Hiscock SJ (2008) Genomic clues to the evolutionary success of polyploid plants. Curr Biol 18:R435–R444

    Article  CAS  PubMed  Google Scholar 

  • Hirochika H (2010) Insertional mutagenesis with Tos17 for functional analysis of rice genes. Breeding Sci 60:486–492

    Article  CAS  Google Scholar 

  • Ishikawa G, Nakamura T, Ashida T, Saito M, Nasuda S, Endo TR, Wu JZ, Matsumoto T (2009) Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor Appl Genet 118:499–514

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci USA 109:19166–19171

    Article  CAS  PubMed  Google Scholar 

  • Jia JZ, Zhao SC, Kong XY et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    Article  CAS  PubMed  Google Scholar 

  • Jin H, He ZH, Li GY, Mu PY, Fan ZR, Xia XC, Zhang Y (2013) Effects of high molecular weight glutenin subunits on wheat quality by Aroona and its near-isogenic lines. Sci Agric Sin 46:1095–1103

    Google Scholar 

  • Kieffer R (2006) The role of gluten elasticity in the baking quality of wheat. In: Popper L, Schfer W, Freund W (eds) Future of flour-A compendium of flour improvement. Verlag Agrimedia, Clenze, pp 169–178

    Google Scholar 

  • Kurowska M, Daszkowska-Golec A, Gruszka D, Marzec M, Szurman M, Szarejko I, Maluszynski M (2011) TILLING—a shortcut in functional genomics. J Appl Genet 52:371–390

    Article  PubMed Central  PubMed  Google Scholar 

  • Lawrence GJ, Shepherd KW (1981) Chromosomal location of genes controlling seed proteins in species related to wheat. Theor Appl Genet 59:25–31

    CAS  PubMed  Google Scholar 

  • Lawrrence GJ, Macritchie F, Wrigley CW (1988) Dough and baking quality of wheat lines deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci. J Cereal Sci 7:109–112

    Article  Google Scholar 

  • León E, Aouni R, Piston F, Rodríguez-Quijano M, Shewry PR, Martín A, Barro F (2010) Stacking HMW-GS transgenes in bread wheat: combining subunit 1Dy10 gives improved mixing properties and dough functionality. J Cereal Sci 51:13–20

    Article  Google Scholar 

  • Li W, Wan Y, Liu Z, Liu K, Liu X, Li B, Li Z, Zhang X, Dong Y, Wang D (2004) Molecular characterization of HMW glutenin subunit allele 1Bx14: further insights into the evolution of Glu-B1-1 alleles in wheat and related species. Theor Appl Genet 109:1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Ling HQ, Zhao SC, Liu DC et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  • Liu L, He ZH, Yan J, Zhang Y, Xia XC, Peña RJ (2005) Allelic variation at the Glu-1 and Glu-3 loci, presence of 1B.1R translocation, and their effects on mixographic properties in Chinese bread wheats. Euphytica 142:197–204

    Article  CAS  Google Scholar 

  • Lookhart G, Cox TS, Chung OK (1993) Statistical analyses of gliadin reversed-phase high-performance liquid chromatography patterns of hard red spring and hard red winter wheat cultivars grown in a common environment: classification indices. Cereal Chem 70:430–434

    CAS  Google Scholar 

  • Magori S, Tanaka A, Kawaguchi M (2010) Physically induced mutation: ion beam mutagenesis. In: Kahl G, Meksem K (eds) The Handbook of Plant Mutation Screening: Mining of Natural and Induced alleles. Weily, Weinheim, pp 1–16

    Chapter  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    Article  CAS  PubMed  Google Scholar 

  • Payne PI (1987) Genetics of wheat storage protein and the effect of allelic variation on breed making quality. Annu Rev Plant Physiol 38:141–153

    Article  CAS  Google Scholar 

  • Payne PI, Lawrence GJ (1983) Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high molecular weight subunits of glutenin in hexaploid wheat. Cereal Res Commun 11:29–35

    Google Scholar 

  • Payne PI, Corfield KG, Blackman JA (1979) Identification of a high-molecular-weight subunit of glutenin whose presence correlates with breadmaking quality in wheat of related pedigree. Theor Appl Genet 55:153–159

    Article  CAS  PubMed  Google Scholar 

  • Peña RJ, Amaya A, Rajaram S, Mujeeb-Kazi A (1990) Variation in quality characteristics associated with some spring 1B/1R translocation wheats. J Cereal Sci 12:105–112

    Article  Google Scholar 

  • Pistón F, Gil-Humanes J, Rodríguez-Quijano M, Barro F (2011) Down-regulating γ-gliadins in bread wheat leads to non-specific increases in other gluten proteins and has no major effect on dough gluten strength. PLoS ONE 6:e24754

    Article  PubMed Central  PubMed  Google Scholar 

  • Qin B, Cao AZ, Wang HY, Chen TT, You FM, Liu YY, Ji JH, Liu DJ, Chen PD, Wang XE (2011) Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theor Appl Genet 123:207–218

    Article  PubMed  Google Scholar 

  • Rahman A, Nakasone A, Chhun T, Ooura C, Biswas KK, Uchimiya H, Tsurumi S, Baskin TI, Tanaka A, Oono Y (2006) A small acidic protein 1 (SMAP1) mediates responses of the Arabidopsis root to the synthetic auxin 2,4-dichlorophenoxyacetic acid. Plant J 47:788–801

    Article  CAS  PubMed  Google Scholar 

  • Rakszegi M, Bekes F, Lang L, Tamas L, Shewry PR, Bedo Z (2005) Technological quality of transgenic wheat expressing an increased amount of a HMW glutenin subunit. J Cereal Sci 42:15–23

    Article  CAS  Google Scholar 

  • Roberts MA, Reader SM, Dalgliesh C, Miller TE, Foote TN, Fish LJ (1999) Induction and characterisation of Ph1 wheat mutants. Genetics 153:1909–1918

    CAS  PubMed  Google Scholar 

  • Ross AS, Bettge AD (2009) Passing the test on wheat end-use quality. In: Carver BF (ed) Wheat Science and Trade. Wiley-Blackwell, Ames, pp 495–520

    Google Scholar 

  • Scossa F, Laudencia-Chingcuanco D, Anderson OD, Vensel WH, Lafiandra D, D’Ovidio R, Masci S (2008) Comparative proteomic and transcriptional profiling of a bread wheat cultivar and its derived transgenic line overexpressing a low molecular weight glutenin subunit gene in the endosperm. Proteomics 8:2948–2966

    Article  CAS  PubMed  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Mo Agric Exp Sta Res Bull 572:1–58

    Google Scholar 

  • Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553

    Article  CAS  PubMed  Google Scholar 

  • Shewry PR, Halford NG, Belton PS, Tatham AS (2002) The structure and properties of gluten: an elastic protein from wheat grain. Phil Trans R Soc Lond B 357:133–142

    Article  CAS  Google Scholar 

  • Shikazono N, Suzuki C, Kitamura S, Watanabe H, Tano S, Tanaka A (2005) Analysis of mutations induced by carbon ions in Arabidopsis thaliana. J Exp Bot 56:587–596

    Article  CAS  PubMed  Google Scholar 

  • Shitsukawa N, Ikari C, Shimada S, Kitagawa S, Sakamoto K, Saito H, Ryuto H, Fukunishi N, Abe T, Takumi S, Nasuda S, Murai K (2007) The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet Syst 82:167–170

    Article  CAS  PubMed  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Sakamoto A, Ishigaki Y, Nikaido O, Sun G, Hase Y, Shikazono N, Tano S, Watanabe H (2002) An ultraviolet-B-resistant mutant with enhanced DNA repair in Arabidopsis. Plant Physiol 129:64–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uthayakumaran S, Beasley HL, Stoddard FL, Keentok M, Phan-Thien N, Tanner RI, Békés F (2002) Synergistic and additive effects of three high molecular weight glutenin subunit loci. I. Effects on wheat dough rheology. Cereal Chem 79:294–300

    Article  CAS  Google Scholar 

  • Vogel JP, Garvin DF, Mockler TC et al (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  CAS  Google Scholar 

  • Wan Y, Liu KF, Wang D, Shewry PR (2000) High molecular weight subunits in the Cylindropyrum and Vertebrata section of the Aegilops genus and identification of subunits related to those encoded by the Dx alleles of common wheat. Theor Appl Genet 101:879–884

    Article  CAS  Google Scholar 

  • Wang C, Kovacs MIP (2002a) Swelling index of glutenin test. I. Method and comparison with sedimentation, gel-protein, and insoluble glutenin tests. Cereal Chem 79:183–189

    Article  CAS  Google Scholar 

  • Wang C, Kovacs MIP (2002b) Swelling index of glutenin test. II. Application in prediction of dough properties and end-use quality. Cereal Chem 79:190–196

    Article  CAS  Google Scholar 

  • Wang GF, Wei X, Fan R, Zhou H, Wang X, Yu C, Dong L, Dong Z, Wang X, Kang Z, Ling H, Shen QH, Wang D, Zhang X (2011) Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance. New Phytol 191:418–431

    Article  CAS  PubMed  Google Scholar 

  • Weegles PL, Hamer RJ, Schofield JD (1996a) Functional properties of wheat glutenin. J Cereal Sci 23:1–17

    Article  Google Scholar 

  • Weegles PL, van der Pijpekamp AM, Graveland A, Hamer RJ, Schofield JD (1996b) Depolymerisation and re-polymerisation of wheat glutenin during dough processing. I. Relationships between glutenin macropolymer content and quality parameters. J Cereal Sci 23:103–111

    Article  Google Scholar 

  • Wrigley CW, Asenstorfer R, Batey IL, Cornish GB, Day L, Mares D, Mrva K (2009) The biochemical and molecular basis of wheat quality. In: Carver BF (ed) Wheat Science and Trade. Wiley-Blackwell, Ames, pp 495–520

    Chapter  Google Scholar 

  • Zhang Y, Tang JW, Yan J, Zhang YL, Zhang Y, Xia XC, He ZH (2009) The gluten protein and interactions between components determine mixograph properties in an F6 recombinant inbred line population in bread wheat. J Cereal Sci 50:219–226

    Article  CAS  Google Scholar 

  • Zhang XF, Liu DC, Yang WL, Liu KF, Sun JZ, Guo XL, Li YW, Wang DW, Ling HQ, Zhang AM (2011) Development of a new marker system for identifying the complex members of the low-molecular-weight glutenin subunit gene family in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:1503–1516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Science and Technology of China (2011BAD07B02-2 and 2009CB118300). We thank Professors Aimin Zhang and Jiazhu Sun for advice on measuring SDS-SV and SIG.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments described in this work were all conducted in compliance with the current laws of the Chinese government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daowen Wang.

Additional information

Communicated by B. Friebe.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Li, S., Zhang, K. et al. Efficient isolation of ion beam-induced mutants for homoeologous loci in common wheat and comparison of the contributions of Glu-1 loci to gluten functionality. Theor Appl Genet 127, 359–372 (2014). https://doi.org/10.1007/s00122-013-2224-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2224-4

Keywords

Navigation