Skip to main content
Log in

An intra-specific linkage map of lettuce (Lactuca sativa) and genetic analysis of postharvest discolouration traits

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Minimally processed salad packs often suffer from discolouration on cut leaf edges within a few days after harvest. This limits shelf life of the product and results in high wastage. Recombinant inbred lines (RILs) derived from a cross between lettuce cvs. Saladin and Iceberg were shown to be suitable for genetic analysis of postharvest discolouration traits in lettuce. An intra-specific linkage map based on this population was generated to enable genetic analysis. A total of 424 markers were assigned to 18 linkage groups covering all nine chromosomes. The linkage map has a total length of 1,040 cM with an average marker distance of 2.4 cM within the linkage groups and was anchored to the ultra-dense, transcript-based consensus map. Significant genetic variation in the postharvest traits ‘pinking’, ‘browning’ and ‘overall discolouration’ was detected among the RILs. Seven significant quantitative trait loci (QTL) were identified for postharvest discolouration traits providing markers linked to the QTL that can be used for marker-assisted selection. Phenotypic stability was confirmed for extreme lines possessing the corresponding QTL parental alleles and which had shown transgressive segregation. This study indicates that a desired phenotype with reduced levels of postharvest discolouration can be achieved by breeding using natural variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altunkaya A, Gokmen V (2008) Effect of various inhibitors on enzymatic browning, antioxidant activity and total phenol content of fresh lettuce (Lactuca sativa). Food Chem 107:1173–1179

    Article  CAS  Google Scholar 

  • Atkinson LD, Hilton HW, Pink DAC (2013) A study of variation in the tendency for postharvest discoloration in a lettuce (Lactuca sativa) diversity set. Int J Food Sci Technol 48(4):801–807

    Article  CAS  Google Scholar 

  • Barrett D, Garcia E, Wayne J (1998) Textural modification of processing tomatoes. Crit Rev Food Sci Nutr 38:173–258

    Article  PubMed  CAS  Google Scholar 

  • Brecht J, Chau K, Fonseca S, Oliviera F, Silva F, Nunes M, Bender R (2003) Maintaining optimal atmosphere conditions for fruits and vegetables throughout the postharvest handling chain. Postharvest Biol Technol 27:87–111

    Article  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B Biol Sci 363(1491):557–572

    Article  CAS  Google Scholar 

  • Cui X, You N, Girke T, Michelmore R, Van Deynze A (2010) Single feature polymorphism detection using recombinant inbred line microarray expression data. Bioinforma 26(16):1983–1989

    Article  CAS  Google Scholar 

  • Defra (2012) Basic horticultural statistics 2012. Report prepared by Department for Environment and Rural Affairs, UK. http://www.defra.gov.uk

  • Degl’Innocenti E, Guidi L, Paradossi A, Tognoni F (2005) Biochemical study of leaf browning in minimally processed leaves of lettuce (Lactuca sativa L. var. Acephala). J Agric Food Chem 52:9980–9984

    Article  Google Scholar 

  • Fonseca JM (2006) Postharvest quality and microbial population of head lettuce as affected by moisture at harvest. J Food Sci 71(2):M45–M49

    Article  CAS  Google Scholar 

  • Gurganus M, Nuzhdin S, Leips J, Mackay T (1999) High-resolution mapping of quantitative trait loci for sternopleural bristle number in Drosophila melanogaster. Genetics 152:1585–1604

    PubMed  CAS  Google Scholar 

  • Hayashi E, Aoyama N, Still DW (2008) Quantitative trait loci associated with lettuce seed germination under different temperature and light environments. Genome 51(11):928–947

    Article  PubMed  CAS  Google Scholar 

  • Hilton HW, Clifford SC, Wurr DCE, Burton KS (2009) The influence of agronomic factors on the visual quality of field-grown, minimally-processed lettuce. J Hortic Sci Biotechnol 84(2):193–198

    Google Scholar 

  • Hisaminato H, Murata M, Homma S (2001) Relationship between enzymatic browning and phenylalanine ammonia-lyase activity of cut lettuce, and the prevention of browning by inhibitors of polyphenol biosynthesis. Biosci Biotech Biochem 65(5):1016–1021

    Article  CAS  Google Scholar 

  • Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genet 135(1):205–211

    CAS  Google Scholar 

  • Jansen RC (1994) Controlling the type-I and type-II errors in mapping in quantitative trait loci. Genet 138(3):871–881

    CAS  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136(4):1447–1455

    PubMed  CAS  Google Scholar 

  • Jeuken M, van Wijk R, Peleman J, Lindhout P (2001) An integrated interspecific AFLP map of lettuce (Lactuca) based on two L. sativa × L. saligna F-2 populations. Theor Appl Genet 103(4):638–647

    Article  CAS  Google Scholar 

  • Johnson W, Jackson L, Ochoa O, Peleman J, van Wijk R, St.Clair D, Michelmore R (2000) A shallow-rooted crop and its wild progenitor differ at loci determining root architecture and deep soil water exploitation. Theor Appl Genet 101:1066–1073

    Article  CAS  Google Scholar 

  • Joslin M, Pointing J (1951) Enzyme-catalyzed oxidative browning of fruit products. Adv Food Res 3:1

    Article  Google Scholar 

  • Kesseli R, Paran I, Michelmore R (1994) Analysis of a detailed genetic linkage map of Lactuca sativa (lettuce) constructed from RFLP and RAPD markers. Genetics 136:1435–1446

    PubMed  CAS  Google Scholar 

  • Kosambi D (1944) The estimation of map distance from recombination values. Ann Eugenet 12(3):172–175

    Google Scholar 

  • Landry B, Kesseli R, Farrara B, Michelmore R (1987) A genetic map of lettuce (Lactuca sativa L.) with restriction fragment length polymorphism, isozyme, disease resistance, and morphological markers. Genetics 116:331–337

    PubMed  CAS  Google Scholar 

  • Langridge P, Lagudah ES, Holton TA, Appels R, Sharp PJ, Chalmers KJ (2001) Trends in genetic and genome analyses in wheat: a review. Aust J Agric Res 52(11–12):1043–1077

    Article  CAS  Google Scholar 

  • Lattanzio V, Lattanzio V, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In: Imperato F (ed) Phytochemistry: advances in research. Research Signpost Trivandrum, India, pp 23–68

  • Lopez-Galvez G, Saltveit M, Cantwell M (1996) Wound-induced phenylalanine ammonia lyase activity: factors affecting its induction and correlation with the quality of minimally processed lettuces. Postharvest Biol Technol 9(2):223–233

    Article  CAS  Google Scholar 

  • Martinez MV, Whitaker JR (1995) The biochemistry and control of enzymatic browning. Trends Food Sci Technol 6(6):195–200

    Article  CAS  Google Scholar 

  • McHale LK, Truco MJ, Kozik A, Wroblewski T, Ochoa OE, Lahre KA, Knapp SJ, Michelmore RW (2009) The genomic architecture of disease resistance in lettuce. Theor Appl Genet 118(3):565–580

    Article  PubMed  CAS  Google Scholar 

  • Mintel International (2009) Salads and Salad Dressings—UK. Independent market analysis report prepared by Mintel Oxygen, Mintel International. http://www.mintel.com

  • Nicoli MC, Elizalde BE, Pitotti A, Lerici CR (1991) Effect of sugars and maillard reaction products on polyphenol oxidase and peroxidase activity in food. J Food Biochem 15(3):169–184

    Article  CAS  Google Scholar 

  • Ogundiwin E, Peace C, Nicolet C, Rashbrook V, Gradziel T, Bliss F, Parfitt D, Crisosto C (2008) Leucoanthocyanidin dioxygenase gene (PpLDOX): a potential functional marker for cold storage browning in peach. Tree Genet Genomes 4(3):543–554

    Article  Google Scholar 

  • Pavlidis P, Noble WS (2003) Matrix2png: a utility for visualizing matrix data. Bioinforma 19(2):295–296

    Article  CAS  Google Scholar 

  • Payne R, Murray D, Harding S, Baird D, Soutar D (2009) GenStat for windows (12th Edition) introduction. VSN International, Hemel Hempstead

    Google Scholar 

  • Peiser G, López-Gálvez G, Cantwell M, Saltveit M (1998) Phenylalanine ammonia lyase inhibitors control browning of cut lettuce. Postharvest Biol Technol 14:171–177

    Article  CAS  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7(4):275–291

    Article  CAS  Google Scholar 

  • Rodenburg CM, Basse H (1960) Varieties of lettuce: an international monograph. Instituut voor de Veredeling van Tuinbouwgewassen

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Bioinformatics Methods and Protocols in the series Methods in Molecular Biology. Humana Press, Totowa

    Google Scholar 

  • Ryder EJ (1979) Salinas lettuce. HortScience 14(3):283–284

    Google Scholar 

  • Sentinelli F, Lovari S, Vitale M, Giorgi G, Di Mario U, Baroni MG (2000) A simple method for non-radioactive PCR-SSCP using MDE™ gel solution and a midi gel format: application for the detection of variants in the GLUT1 and CTLA-4 genes. J Biotechnol 78(2):201–204

    Article  PubMed  CAS  Google Scholar 

  • Solomon E, Sundaram U, Machonkin T (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2605

    Article  PubMed  CAS  Google Scholar 

  • Stoffel K, van Leeuwen H, Kozik A, Caldwell D, Ashrafi H, Cui X, Tan X, Hill T, Reyes-Chin-Wo S, Truco M-J, Michelmore R, Van Deynze A (2012) Development and application of a 6.5 million feature affymetrix genechip® for massively parallel discovery of single position polymorphisms in lettuce (Lactuca spp.). BMC Genomics 13(1):185

    Article  PubMed  CAS  Google Scholar 

  • Syed NH, Sorensen AP, Antonise R, van de Wiel C, van der Linden CG, van’t Westende W, Hooftman DAP, den Nijs HCM, Flavell AJ (2006) A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers. Theor Appl Genet 112(3):517–527

    Google Scholar 

  • Toivonen P (2004) Postharvest storage procedures and oxidative stress. HortScience 39:938–942

    CAS  Google Scholar 

  • Toivonen P, Brummell D (2008) Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol Technol 48(1):1–14

    Article  CAS  Google Scholar 

  • Tomas-Barberan F, Espin JC (2001) Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J Sci Food Agric 81(9):853–876

    Article  CAS  Google Scholar 

  • Truco MJ, Antonise R, Lavelle D, Ochoa O, Kozik A, Witsenboer H, Fort SB, Jeuken MJW, Kesseli RV, Lindhout P, Michelmore RW, Peleman J (2007) A high-density, integrated genetic linkage map of lettuce (Lactuca spp.). Theor Appl Genet 115(6):735–746

    Article  PubMed  CAS  Google Scholar 

  • Truco MJ, Ashrafi H, Kozik A, van Leeuwen H, Bowers J, Reyes Chin Wo S, Stoffel K, Xu H, Hill T, Van Deynze A, Michelmore RW (2013) An ultra high-density, transcript-based, genetic map of lettuce. Genes Genomes Genet. doi:10.1534/g3.112.004929

  • Van Ooijen J (2006) JoinMap® 4, Software for the calculation of genetic maps in experimental populations. Kyazma B.V., Wageningen

    Google Scholar 

  • Van Ooijen J, Boer J, Jansen R, Maliepaard C (2002) MapQTL 4.0, Software for the calculation of QTL position on genetic maps. Plant Research International, Wageningen

  • Van Os H, Andrzejewski S, Bakker E, Barrena I, Bryan G, Caromel B, Ghareeb B, Isidore E, De Jong W, Van Koert P, Lefebvre V, Milbourne D, Ritter E, van der Voort J, Rousselle-Bourgeois F, Van Vliet J, Waugh R, Visser R, Bakker J, Van Eck H (2006) Construction of a 10,000-marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genomewide physical map. Genetics 173:1075–1087

    Article  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP—a new technique for DNA-fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Lubberstedt T, Xia XC, Stam P, Zabeau M, Kuiper M (1999) Two high-density AFLP (R) linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99(6):921–935

    Article  CAS  Google Scholar 

  • Wagstaff C, Clarkson G, Zhang F, Rothwell S, Fry S, Taylor G, Dixon M (2010) Modification of cell wall properties in lettuce improves shelf life. J Exp Bot 61(4):1239–1248

    Article  PubMed  CAS  Google Scholar 

  • Wanner L, Li G, Ware D, Somssich I, Davis K (1995) The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Mol Biol 27:327–338

    Article  PubMed  CAS  Google Scholar 

  • Watada A, Qi L (1999) Quality of fresh-cut produce. Postharvest Biol Technol 15:201–205

    Article  Google Scholar 

  • Waycott W, Fort SB, Ryder EJ, Michelmore RW (1999) Mapping morphological genes relative to molecular markers in lettuce (Lactuca sativa L.). Heredity 82:245–251

    Article  PubMed  CAS  Google Scholar 

  • Werij J, Kloosterman B, Celis-Gamboa C, de Vos C, America T, Visser R, Bachem C (2007) Unravelling enzymatic discoloration in potato through a combined approach of candidate genes, QTL, and expression analysis. Theor Appl Genet 115(2):245–252

    Article  PubMed  CAS  Google Scholar 

  • WRAP (2009) Household food and drink waste in the UK. Report prepared by Waste and Resources Action Programme (WRAP). Banbury, UK

  • Yahia EM, Gonzalez-Aguilar G (1998) Use of passive and semi-active atmospheres to prolong the postharvest life of avocado fruit. Food Science and Technology-Lebensmittel-Wissenschaft Technologie 31(7–8):602–606

    Google Scholar 

  • Zagory D, Kader AA (1988) Modified atmosphere packaging of fresh produce. Food Technol 42(9):70

    Google Scholar 

  • Zawistowski J, Biliaderis C, Eskin N (1991) Polyphenol oxidase. In: Robinson D, Eskin N (eds) Oxidative enzymes in foods. Elsevier Applied Science Chemistry, London, pp 217–273

    Google Scholar 

  • Zeng Z (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhang F, Wagstaff C, Rae A, Sihota A, Keevil C, Rothwell S, Clarkson G, Michelmore R, Truco M, Dixon M, Taylor G (2007) QTLs for shelf life in lettuce co-locate with those for leaf biophysical properties but not with those for leaf developmental traits. J Exp Bot 58(6):1433–1449

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was primarily conducted at the University of Warwick, Wellesbourne campus, formerly Warwick HRI. We would like to thank a number of laboratory personnel at Warwick HRI, in particular, Sandy McClement and Neale Grant who helped in the planting and maintaining of the field trials in the UK. Rijk Zwaan Ltd. maintained the field site in the Netherlands and we would like to specifically thank Wendy Deijkers for help during harvest and data collection. This work was supported by a Biotechnology and Biological Sciences Research Council (BBSRC) Crop Science Initiative CASE PhD studentship (BBS/S/E/2006/13221) for LDA in collaboration with Rijk Zwaan Ltd, EU GenRes project “Leafy vegetables germplasm, stimulating use” and Department for Environment, Food and Rural Affairs (Defra) project IF0157 “Vegetable Genetic Improvement Network (VeGIN): Pre-breeding research to support sustainable farming of leafy vegetables and salads”. Travel and subsistence for LDA to work at UC Davis was provided by grants from the Vegetable Research Trust, Glasshouse Crop Research Institute Trust, UK Resource Centre for Women in Science, Engineering and Technology, American Study and Student Exchange Committee and a Warwick HRI Student Travel Award. The contributions of LKH, MJT, and RWM were part of the Compositae Genome Project and supported by the National Science Foundation Plant Genome Program Grant # DBI0421630.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. C. Pink.

Additional information

Communicated by M. Havey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2013_2168_MOESM1_ESM.docx

Online Resource 1 Mapped IGG marker name conversions from the Saladin × Iceberg linkage map. Marker information for the Illumina GoldenGate assay available at http://chiplett.ucdavis.edu/public/Data/MAP_214RILs/map_2009/index.php (DOCX 23 kb)

122_2013_2168_MOESM2_ESM.docx

Online Resource 2 Mapped SPP marker sequences from the Saladin × Iceberg linkage map. Where GeneChip Sequence Assembly ID is the EST/Contig retrieved from http://cgpdb.ucdavis.edu/cgpdb2/CGP_ContigViewer/ and the SPP Position is single positional polymorphism location in that sequence (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atkinson, L.D., McHale, L.K., Truco, M.J. et al. An intra-specific linkage map of lettuce (Lactuca sativa) and genetic analysis of postharvest discolouration traits. Theor Appl Genet 126, 2737–2752 (2013). https://doi.org/10.1007/s00122-013-2168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2168-8

Keywords

Navigation