Skip to main content
Log in

Contribution of an additive locus to genetic variance when inheritance is multi-factorial with implications on interpretation of GWAS

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 05 May 2013

Abstract

Although the effects of linkage disequilibrium (LD) on partition of genetic variance have received attention in quantitative genetics, there has been little discussion on how this phenomenon affects attribution of variance to a given locus. This paper reinforces the point that standard metrics used for assessing the contribution of a locus to variance can be misleading when there is linkage LD and that factors such as distribution of effects and of allelic frequencies over loci, or existence of frequency-dependent effects, play a role as well. An apparently new metric is proposed for measuring how much of the variability is contributed by a locus when LD exists. Effects of intervening factors, such as type and extent of LD, number of loci, distribution of effects, and of allelic frequencies over loci, as well as a model for generating frequency-dependent effects, are illustrated via hypothetical simulation scenarios. Implications on the interpretation of genome-wide association studies (GWAS), as typically carried out in human genetics, where single marker regression and the assumption of a sole quantitative trait locus (QTL) are common, are discussed. It is concluded that the standard attributions to variance contributed by a single QTL from a GWAS analysis may be misleading, conceptually and statistically, when a trait is complex and affected by sets of many genes in linkage disequilibrium. Yet another factor to consider in the “missing heritability” saga?.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Avery PJ, Hill WG (1979) Variance in quantitative traits due to linked dominant genes and variance in heterozygosity in small populations. Genetics 91:817–844

    PubMed  CAS  Google Scholar 

  • Barton NH (2000) Estimating multilocus linkage disequilibria. Heredity 84:373–389

    Article  PubMed  CAS  Google Scholar 

  • Beavis WD (1998) QTL analysis: Power, precision, and accuracy. pp. 145–161. In: Paterson AH (ed.) Molecular dissection of complex traits. CRC Press, Boca Ration

  • Bulmer MG (1971) The effect of selection on genetic variability. Am Nat 105:201–211

    Article  Google Scholar 

  • Bulmer MG (1976) Regressions between relatives. Genet Res 28:199–203

    Article  PubMed  CAS  Google Scholar 

  • Bulmer MG (1980) The Mathematical Theory of Quantitative Genetics. Oxford University Press, New York

    Google Scholar 

  • Comstock RE, Robinson HF (1952) Estimation of average dominance of genes. In JW Gowen (ed.) Heterosis, pp 494–516. Lowa State College Press, Ames

  • Daetwyler, HD, Pong-Wong R, Villanueva B, Wooliams JA (2010) The impact of genetic architecture on genome-wide evaluation methods. Genetics 185:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • de los Campos G, Gianola D, Allison DAB (2010) Predicting genetic predisposition in humans: the promise of whole-genome markers. Nat Rev Genet 11:880–886

    Article  Google Scholar 

  • Emigh TH (1977) Partition of phenotypic variance under unknown dependent association of genotypes and environments. Biometrics 33:505–514

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to Quantitative Genetics. 4th edn. Longman, New York

  • Fisher RA (1918) The correlation between relatives on the suppostion of Mendelian inheritance. Trans Royal Soc Edinburgh 52:399–433

    Article  Google Scholar 

  • Gianola D, de los Campos G, Hill WG, Manfredi E, Fernando RL (2009) Additive genetic variability and the Bayesian alphabet. Genetics 183:347–363

    Article  PubMed  Google Scholar 

  • Goldberger AS (1977) Models and methods in the IQ debate, Part I. Social Systems Research Institute Workshop Series, Number 7710. University of Wisconsin, Madison

  • Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet 10:381–391

    Article  PubMed  CAS  Google Scholar 

  • Hayes JF, Hill WG (1981) Modification of estimates of parameters in the construction of genetic selection indices. Biometrics 37:483–493

    Article  Google Scholar 

  • Hedrick PW (1987) Gametic disequilibrium measures: proceed with caution. Genetics 117:331–341

    PubMed  CAS  Google Scholar 

  • Henderson CR (1953) Estimation of variance and covariance components. Biometrics 9:226–252

    Article  Google Scholar 

  • Heslot N, Yang HP, Sorrells ME, Jannink JL (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–160

    Google Scholar 

  • Hill WG, Robertson A (1966) The effect of linkage on limits to artificial selection. Genet Res 8:269–294

    Article  PubMed  CAS  Google Scholar 

  • Hill WG, Robertson, A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231

    Article  Google Scholar 

  • Hospital F (1992) Effets de la liaison genique et des effectifs finis sur la variabilité des caracteres quantitatifs sous selection. These de Doctorat. Universite de Motpellier II, Academie de Montpellier

  • Kathiresan S, Melander O, Guiducci O, Surti A, Burtt N, Rieder MJ, Cooper GM, Roos C, Voight BF, Havulinna AS, Wahlstrand B, Hedner T, Corella D, Shyong T, Ordovas JM, Berglund G, Vartiainen E, Jousilahti P, Hedblad B, Taskinen MR, Newton-Cheh C, Salomaa V, Peltonen L, Groop L, Altshuler DM, Orho-Melander M (2008) Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 40:189–196

    Article  PubMed  CAS  Google Scholar 

  • Kempthorne O (1978) Logical, epistemological and statistical aspects of nature-nurture data interpretation. Biometrics 34:1–23

    Article  PubMed  CAS  Google Scholar 

  • Lewontin RC, Rose A, Kamin LJ (1984) Not in Our Genes: Biology, Ideology, and Human Nature. New York, Penguin

  • Lewontin RC (1988) On measures of gametic disequilibrium. Genetics 120:849–852

    PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and Analysis of Quantitative Traits. Sinauer, Sunderland

    Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 8. doi:10.1038/nature08494

  • Marchetti GM, Drton M (2010) ggm: Graphical Gaussian Models. R package version 1.0.4. http://CRAN.R-project.org/package=ggm

  • Marsaglia G, Olkin I (1984) Generating correlation matrices. SIAM J Sci Stat Comput 5:470–475

    Article  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Ober U, Ayroles JF, Stone EA, Richards S, Zhu D, Gibbs RA, Stricker C, Gianola D, Schlather M, Mackay TFC, Simianer H (2012) Using whole-genome sequence data to predict quantitative trait phenotypes in Drosophila melanogaster. PLos Genet 8:e1002685

    Article  PubMed  CAS  Google Scholar 

  • Powell JE, Kranis A, Floyd J, Dekkers JCM, Knott S, Haley CS (2011) Optimal use of regression models in genome-wide association studies. Anim Genet 43:133–143

    Article  PubMed  Google Scholar 

  • Sabatti C, Risch N (2002) Homozygosity and linkage disequilibrium. Genetics 160:1707–1719

    PubMed  Google Scholar 

  • Searle SR (1971) Linear Models. Wiley, New York

    Google Scholar 

  • Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G et al (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42:937–948

    Article  PubMed  CAS  Google Scholar 

  • Stranger BE, Stahl EA, Raj T (2011) Progress and promise of genome-wide association studies for human complex trait genetics. Genetics 187:367–383

    Article  PubMed  CAS  Google Scholar 

  • Thompson R (1979) Sire evaluation. Biometrics 35:339–353

    Article  Google Scholar 

  • Turelli M, Barton NH (1990) Dinamycs of polygenic characters under selection. Theor Popul Biol 38:1–57

    Article  Google Scholar 

  • Weir B (2008) Linkage disequilibrium and association mapping. Annu Rev Genom Human Genet 9:129–142

    Article  CAS  Google Scholar 

  • Wu X, Ye Y, Rosell R, Amos CI et al (2011) Genome-wide association study of survival in non–small cell lung cancer patients receiving platinum-based chemotherapy. J Natl Cancer Inst 103:817–825

    Article  PubMed  CAS  Google Scholar 

  • Xu S (2003) Theoretical basis of the Beavis effect. Genetics 165:2259–2268

    PubMed  Google Scholar 

  • Zhang X-S, Wang J, Hill WG (2002) Pleiotropic model of maintenance of quantitative genetic variation at mutation–selection balance. Genetics 161:419–433

    PubMed  CAS  Google Scholar 

  • Zhao H, Nettleton D, Soller M, Dekkers JCM (2005) Evaluation of linkage disequilibrium measures between multi-allelic markers as predictors of linkage disequilibrium between markers and QTL. Genet Res Camb 86:77–87

    Article  CAS  Google Scholar 

  • Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Academy Sci 109:1193–1198

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Daniel Gianola acknowledges support from the Wisconsin Agriculture Experiment and from a joint grant from the Scientific Office of AgroParisTech. France, and the Animal Genetics Division of INRA, France. The authors thank two anonymous reviewers, especially “2”, for a most through appraisal of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Gianola.

Additional information

Communicated by M. Frisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gianola, D., Hospital, F. & Verrier, E. Contribution of an additive locus to genetic variance when inheritance is multi-factorial with implications on interpretation of GWAS. Theor Appl Genet 126, 1457–1472 (2013). https://doi.org/10.1007/s00122-013-2064-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2064-2

Keywords

Navigation