Skip to main content

Advertisement

Log in

Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Quantitative trait loci (QTL)/association mapping aims at finding genomic loci associated with the phenotypes, whereas genomic selection focuses on breeding value prediction based on genomic data. Variable selection is a key to both of these tasks as it allows to (1) detect clear mapping signals of QTL activity, and (2) predict the genome-enhanced breeding values accurately. In this paper, we provide an overview of a statistical method called least absolute shrinkage and selection operator (LASSO) and two of its generalizations named elastic net and adaptive LASSO in the contexts of QTL mapping and genomic breeding value prediction in plants (or animals). We also briefly summarize the Bayesian interpretation of LASSO, and the inspired hierarchical Bayesian models. We illustrate the implementation and examine the performance of methods using three public data sets: (1) North American barley data with 127 individuals and 145 markers, (2) a simulated QTLMAS XII data with 5,865 individuals and 6,000 markers for both QTL mapping and genomic selection, and (3) a wheat data with 599 individuals and 1,279 markers only for genomic selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akaike H (1974) New look at the statistical model identification. IEEE T Autom Contr 19:716–723

    Article  Google Scholar 

  • Alexander DH, Lange K (2011) Stability selection for genome-wide association. Genet Epidemiol 35:722–728

    Article  PubMed  Google Scholar 

  • Ayers KL, Cordell HJ (2010) SNP selection in genome-wide and candidate gene studies via penalized logistic regression. Genet Epidemiol 34:879–891

    Article  PubMed  Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Article  Google Scholar 

  • Broman KW, Speed TP (2002) A model selection approach for the identification of quantitative trait loci in experimental crosses. J Roy Stat Soc B 64:641–656

    Article  Google Scholar 

  • Bühlmann P, Meier L (2008) Discussion of “One-step sparse estimates in nonconcave penalized likelihood models” (authors Zou H and Li R). Ann Stat 36:1534–1541

    Article  Google Scholar 

  • Bühlmann P, van de Geer S (2011) Statistics for high-dimensional data: methods, theory and applications. Springer, New York

    Book  Google Scholar 

  • Burgueño J, DeLos Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52:707–719

    Article  Google Scholar 

  • Chen J, Chen Z (2008) Extended Bayesian information criteria for model selection with large model spaces. Biometrika 95:759–771

    Article  Google Scholar 

  • Chen J, Cui W (2010) A two-phase procedure for QTL mapping with regression models. Theor Appl Genet 121:363–372

    Article  PubMed  Google Scholar 

  • Cho S, Kim K, Kim YJ, Lee JK, Cho YS, Lee JY, Han BG, Kim H, Ott J, Park T (2010) Joint identification of multiple genetic variants via elastic-net variable selection in a genome-wide association analysis. Ann Hum Genet 74:416–428

    Article  PubMed  Google Scholar 

  • Clark SA, Hickey JM, van der Werf JHJ (2011) Different models of genetic variation and their effect on genomic evaluation. Genet Sel Evol 43:18

    Article  PubMed  Google Scholar 

  • Crooks L, Sahana G, De Koning DJ, Lund MS, Carlborg Ö (2009) Comparison of analyses of the QTLMAS XII common dataset. II: genome-wide association and fine mapping. BMC Proc 3:S2

    Article  PubMed  Google Scholar 

  • Crossa J, DeLos Campos G, Pérez P, Gianola D, Burgueño J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J, Arief V, Banziger M, Braun H-J (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724

    Article  PubMed  CAS  Google Scholar 

  • Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA (2010) The impact of genetic architecture on genome-wide evaluation methods. Genetics 185:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Dekkers JCM (2010) Use of high-density marker genotype for genetic improvement of livestock by genomic selection. CAB Reviews 5

  • Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3:22–32

    Article  PubMed  CAS  Google Scholar 

  • DeLos Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel K, Cotes JM (2009) Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182:375–385

    Article  CAS  Google Scholar 

  • Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32:407–451

    Article  Google Scholar 

  • Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP . Plant Genome 4:250–255

    Article  Google Scholar 

  • Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96:1348–1360

    Article  Google Scholar 

  • Figueiredo MAT (2003) Adaptive sparseness for supervised learning. IEEE Trans Pattern Anal Mach Intell 25:1150–1159

    Article  Google Scholar 

  • Friedman J, Hastie T, Höfling H, Tibshirani R (2007) Pathwise coordinate optimization. Ann Appl Stat 1:302–332

    Article  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1

    PubMed  Google Scholar 

  • Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124:323–330

    Article  PubMed  CAS  Google Scholar 

  • Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397

    PubMed  CAS  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  PubMed  CAS  Google Scholar 

  • Harris BL, Johnson DL (2010) SNP selection using Elastic net, with application to genomic selection. In 9th World Congress on Genetics Applied to Livestock Production, Leipzig, Germany. http://www.kongressband.de/wcgalp2010/assets/pdf/0282.pdf

  • Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning. Springer, New York

    Book  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Hesterberg T, Choi NH, Meier L, Fraley C (2008) Least angle and \(\ell_1\) penalized regression: a review. Stat Surv 2:61–93

    Article  Google Scholar 

  • Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55–67

    Google Scholar 

  • Huang J, Ma S, Zhang CH (2008) Adaptive Lasso for sparse high-dimensional regression models. Stat Sin 18:1603–1618

    Google Scholar 

  • Jannink JL, Bink MCAM, Jansen RC (2001) Using complex plant pedigrees to map valuable genes. Trends Plant Sci 6:337–342

    Article  PubMed  CAS  Google Scholar 

  • Kyung M, Gill J, Ghosh M, Casella G (2010) Penalized regression, standard errors, and Bayesian Lassos. Bayesian Anal 2:369–412

    Google Scholar 

  • Legarra A, Robert-Granié C, Croiseau P, Guillaume F, Fritz S (2011) Improved Lasso for genomic selection. Genet Res 93:77–87

    Article  CAS  Google Scholar 

  • Li Q, Lin N (2010) The Bayesian elastic net. Bayesian Anal 5:151–170

    Article  Google Scholar 

  • Li Z, Sillanpää MJ (2012) Estimation of quantitative trait locus effects with epistasis by variational Bayes algorithms. Genetics 190:231–249

    Article  PubMed  Google Scholar 

  • Li J, Das K, Fu G, Li R, Wu R (2011) The Bayesian LASSO for genome-wide association studies. Bioinformatics 27:516–523

    Article  PubMed  CAS  Google Scholar 

  • Lund MS, Sahana G, De Koning DJ, Su G, Carlborg Ö (2009) Comparison of analyses of the QTLMAS XII common dataset. I: Genomic selection. BMC Proc 3:S1

    Article  PubMed  Google Scholar 

  • Meinshausen N (2007) Relaxed LASSO. Comput Stat Data An 52:374–393

    Article  Google Scholar 

  • Meinshausen N, Bühlmann P (2006) High-dimensional graphs and variable selection with the lasso. Ann Stat 34:1436–1462

    Article  Google Scholar 

  • Meinshausen N, Bühlmann P (2010) Stability selection. J Roy Stat Soc B 72:417–473

    Article  Google Scholar 

  • Meinshausen N, Meier L, Bühlmann P (2009) P-values for high-dimensional regression. J Am Stat Assoc 104:1671–1681

    Article  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Mutshinda CM, Sillanpää MJ (2010) Extended Bayesian LASSO for multiple quantitative trait loci mapping and unobserved phenotype prediction. Genetics 186:1067–1075

    Article  PubMed  Google Scholar 

  • Osborne M, Presnell B, Turlach B (2000) A new approach to variable selection in least squares problems. IMA J Numer Anal 20:389–404

    Article  Google Scholar 

  • Park T, Casella G (2008) The Bayessian LASSO. J Am Stat Assoc 103:681–686

    Article  CAS  Google Scholar 

  • Patterson HD, Thompson R (1971) Recovery of inter-block information with block sizes are unequal. Biometrika 58:545–554

    Article  Google Scholar 

  • Pérez P, DeLos Campos G, Crossa J, Gianola D (2010) Genomic-enabled prediction based on molecular markers and pedigree using the BLR package in R. Plant Genome 3:106–116

    Article  PubMed  Google Scholar 

  • Piepho HP (2009) Ridge regression and extensions for genomewide selection in maize. Crop Sci 49:1165–1176

    Article  Google Scholar 

  • Piepho HP, Ogutu JO, Schulz-Streeck T, Estaghvirou B, Gordillo A, Technow F (2012) Efficient computation of ridge-regression BLUP in genomic selection in plant breeding. Crop Sci 52:1093–1104

    Article  Google Scholar 

  • Shepherd RK, Meuwissen THE, Woolliams JA (2010) Genomic selection and complex trait prediction using a fast EM algorithm applied to genome-wide markers. BMC Bioinforma 11:529

    Article  Google Scholar 

  • Siegmund D, Yakir B (2007) The statistics of gene mapping. Springer, Berlin

    Google Scholar 

  • Sillanpää MJ (2011) Overview of techniques to account for confounding due to population stratification and cryptic relatedness in genomic data association analyses. Heredity 106:511–519

    Article  PubMed  Google Scholar 

  • Sillanpää MJ, Corander J (2002) Model choice in gene mapping: what and why. Trends Genet 18:301–307

    Article  PubMed  Google Scholar 

  • Simon N, Friedman J, Hastie T, Tibshirani R (2011) Regularization paths for Cox’s proportional hazards model via coordinate descent. J Stat Softw 39:5

    Google Scholar 

  • Solberg TR, Sonesson AK, Woolliams JA, Ødegard J, Meuwissen THE (2009) Persistence of accuracy of genome-wide breeding values over generations when including a polygenic effect. Genet Sel Evol 41:53

    Article  PubMed  Google Scholar 

  • Sun W, Ibrahim JG, Zou F (2010) Genomewide multiple-loci mapping in experimental crosses by iterative adaptive penalized regression. Genetics 185:349–359

    Article  PubMed  CAS  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc B 58:267–288

    Google Scholar 

  • Tinker NA, Mather DE, Rossnagel BG, Kasha KJ, Kleinhofs A et al (1996) Regions of the genome that affect agronomic performance in two-row barley. Crop Sci 36:1053–1062

    Article  Google Scholar 

  • Usai MG, Goddard ME, Hayes BJ (2009) LASSO with cross-validation for genomic selection. Genet Res 91:427–436

    Article  CAS  Google Scholar 

  • Valdar W, Solberg LC, Gauguier D, Cookson WO, Rawlins JNP, Mott R, Flint J (2006) Genetic and environmental effects on complex traits in mice. Genetics 174:959–984

    Article  PubMed  CAS  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Eskridge KM, Crossa J (2010) Identifying QTLs and epistasis in structured plant populations using adaptive mixed LASSO. J Agric Biol Envir S 16:170–184

    Article  Google Scholar 

  • Wasserman L, Roeder K (2009) High dimensional variable selection. Ann Stat 37:2178–2201

    Article  PubMed  Google Scholar 

  • Wu TT, Chen YF, Hastie T, Sobel E, Lange K (2009) Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 25:714–721

    Article  PubMed  CAS  Google Scholar 

  • Xu S (2003) Estimating polygenic effects using markers of the entire genome. Genetics 163:789–801

    PubMed  CAS  Google Scholar 

  • Xu S (2007) An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biometrics 63:513–521

    Article  PubMed  CAS  Google Scholar 

  • Yi N, Xu S (2008) Bayesian LASSO for quantitative trait loci mapping. Genetics 179:1045–1055

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Zhao P, Yu B (2006) On model selection consistency of LASSO. J Mach Learn Res 7:2541–2563

    Google Scholar 

  • Zhou S (2010) Thresholded Lasso for high dimensional variable selection and statistical estimation. arXiv:1002.1583v2

  • Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101:1418–1429

    Article  CAS  Google Scholar 

  • Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J Roy Stat Soc B 67:301–320

    Article  Google Scholar 

  • Zou H, Hastie T (2008) Model building and feature selection with genomic data. In Liu H and Motoda H, editors, Computational Methods of Feature Selection, chapter 20, pp 393–411. Chapman & Hall, London

  • Zou H, Zhang H (2009) On the adaptive elastic-net with a diverging number of parameters. Ann Stat 37:1733–1751

    Article  PubMed  Google Scholar 

  • Zou H, Hastie T, Tibshirani R (2007) On the “degrees of freedom” of the lasso. Ann Stat 35:2173–2192

    Article  Google Scholar 

Download references

Acknowledgments

We thank Daniel Blande, Mahlako Makgahlela and Crispin Mutshinda for giving constructive suggestions on the manuscript. We are also grateful to two anonymous referees for their valuable comments. This work was supported by the Finnish Graduate School of Population Genetics, and by research grants from the Academy of Finland and the University of Helsinki’s Research Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikko J. Sillanpää.

Additional information

Communicated by R. Varshney.

Appendix: Coordinate descent algorithm

Appendix: Coordinate descent algorithm

Initially, the marker data are assumed to be standardized and phenotype data to be centered so that \(\frac{1}{n}\sum\nolimits_{{i = 1}}^{n} {x_{{ij}} } = 0, \) \(\sum\nolimits^n_{i=1} x^2_{ij}=1\) for j = 1, …, p, and \(\frac{1}{n}\sum\nolimits^n_{i=1} y_i=0. \) The Elastic net problem (LASSO: α = 1, Ridge regression: α = 0) can be specified as

$$ \hat{\varvec{\beta}}=\arg \min_{\varvec{\beta}}\left\{\frac{1}{2N}\sum^n_{i=1}\left(y_i-\sum^{p}_{j=1}x_{ij}\beta_j\right)^2 +\lambda[(1-\alpha)\frac{1}{2}\sum^{p}_{j=1}\beta^2_j+\alpha\sum^{p}_{j=1}|\beta_j|]\right\}. $$
(16)

The principle of the coordinate descent is that when minimizing the Elastic net target function, the algorithm updates each component β j successively in the direction giving the largest decrease of the objective function by fixing all other components. Assuming the current estimate of β j is β (0) j , and we have already updated the estimate of \(\beta_1, \beta_2, \ldots, \beta_{j-1}\) as \(\beta^{(1)}_1, \beta^{(1)}_2, \ldots, \beta^{(1)}_{j-1}, \) the estimate of β (1) j can be updated as

$$ \beta^{(1)}_j(\lambda)=\frac{S(\beta^{(0)}_j+\frac{1}{N}\sum^n_{i=1}x_{ij}r_i,\lambda\alpha)}{1+\lambda(1-\alpha)} , $$
(17)

where S(ab) is the thresholding function defined as

$$ S(a,b) = \hbox {sign}(a)\cdot\max(|a|-b,0), $$
(18)

and \(r_i=y_i-\sum^{p}_{j}x_{ij}{\beta_j}\) for \(i=1,\ldots,n\) is the residual, which should be updated as \(r_i=r_i+x_{ij}(\beta^{(0)}_j-\beta^{(1)}_j)\) when \(\beta^{(1)}_{j}\) is ready. The algorithm updates each component of \({\varvec{\beta}}\) in a cyclic manner as \(1, 2, \ldots, p, 1, 2, \ldots, p, \ldots , \) until the solutions converge.

The coordinate descent algorithm can be used for Adaptive LASSO as well. In each iteration, we use the update function:

$$ \beta^{(1)}_j(\lambda)=S\left(\beta^{(0)}_j+\frac{1}{N}\sum^n_{i=1} x_{ij}r_i,\frac{\lambda}{|\hat{\beta}_{{\rm init},j}|}\right) , $$
(19)

where \(\hat{\beta}_{{\rm init},j}\) are certain initial estimates, for example, from OLS or standard LASSO.

For more information, see Friedman et al. (2007) and (2010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Sillanpää, M.J. Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection. Theor Appl Genet 125, 419–435 (2012). https://doi.org/10.1007/s00122-012-1892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1892-9

Keywords

Navigation