Skip to main content

Advertisement

Log in

Comparative mapping of the oat Dw6/dw6 dwarfing locus using NILs and association with vacuolar proton ATPase subunit H

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Seven pairs of oat near-isogenic lines (NILs) (Kibite in Crop Sci 41:277–278, 2001) contrasting for the Dw6 dwarfing gene were used to test for correlation between tall/dwarf phenotype and polymorphic genotype using restriction fragment length polymorphism (RFLP) and other molecular markers selected from the Kanota × Ogle (K×O) (Wight et al. in Genome 46:28–47, 2003) and Terra × Marion (De Koeyer et al. in Theor Appl Genet 108:1285–1298, 2004) recombination maps. This strategy located the Dw6/dw6 locus to a small chromosomal region on K×O linkage group (LG) KO33, near or at a putative RFLP locus aco245z. Aco245z and other tightly linked flanking markers have potential for use in marker-assisted selection (MAS), and PCR-based markers were developed from several of these. RFLP genotyping of the Dw6 NILs indicated that 13 of the 14 individual lines were homogeneously maternal or paternal for a large genomic region near Dw6/dw6, an unexpected result for NILs. The cDNA clone aco245 codes for a vacuolar proton ATPase subunit H, a potential candidate gene for Dw6. Vacuolar proton ATPase enzymes have a central role in plant growth and development and a mutation in subunit C is responsible for the det3 dwarfing mutation in Arabidopsis thaliana (Schumacher et al. in Genes Dev 13:3259–3270, 1999). Aco245 affords the potential of designing highly precise diagnostic markers for MAS for Dw6. The Dw6 NILs have potential utility to investigate the role of vacuolar proton ATPases in growth and development in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amemiya T, Kanayama Y, Yamaki S, Yamada K, Shiratake K (2006) Fruit-specific V-ATPase suppression in antisense-transgenic tomato reduces fruit growth and seed formation. Planta 223:1272–1280

    Article  PubMed  CAS  Google Scholar 

  • Beer SC, Siripoonwiwat W, O’Donoughue LS, Souza E, Matthews D, Sorrells ME (1997) Associations between molecular markers and quantitative traits in an oat germplasm pool: can we infer linkages? J Agric Genomics 3. http://wheat.pw.usda.gov/jag/papers97/paper197/indexp197.html (published by permission of CAB International)

  • Brown PD, McKenzie RIH, Mikaelsen K (1980) Agronomic, genetic, and cytologic evaluation of a vigorous new semidwarf oat. Crop Sci 20:303–306

    Article  Google Scholar 

  • Chapados J, Kibite S, Bancroft B, Molnar SJ (2006) Molecular mapping of the Dw6 dwarfing locus. Poster abstract, 2006 American Oat Workers’ Conference, Fargo, North Dakota, July 23–26. http://wheat.pw.usda.gov/ggpages/oatnewsletter/v50/AOWC/

  • De Koeyer DL, Tinker NA, Wight CP, Deyl J, Burrows VD, O’Donoughue LS, Lybaert A, Molnar SJ, Armstrong KC, Fedak G, Wesenberg DM, Rossnagel BG, McElroy AR (2004) A molecular linkage map with associated QTLs from a hulless × covered spring oat population. Theor Appl Genet 108:1285–1298

    Article  PubMed  Google Scholar 

  • Fox SL, Jellen EN, Kianian SF, Rines HW, Phillips RL (2001) Assignment of RFLP linkage groups to chromosomes using monosomic F1 analysis in hexaploid oat. Theor Appl Genet 102:320–326

    Article  CAS  Google Scholar 

  • Gogarten JP, Fichmann J, Braun Y, Morgan L, Styles P, Taiz SL, DeLapp K, Taiz L (1992) The use of antisense mRNA to inhibit the tonoplast H+ ATPase in carrot. Plant Cell 4:851–864

    Article  PubMed  CAS  Google Scholar 

  • Hemamalini GS, Shashidhar HE, Hittalmani S (2000) Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica 112:69–78

    Article  CAS  Google Scholar 

  • Holland JB, Moser HS, O’Donoughue LS, Lee M (1997) QTLs and epistasis associated with vernalization responses in oat. Crop Sci 37:1306–1316

    Article  Google Scholar 

  • Jellen EN, Rooney WL, Phillips RL (1993) Characterization of the hexaploid oat Avena byzantina cv. Kanota monosomic series using C-banding and RFLPs. Genome 36:962–970

    Article  PubMed  CAS  Google Scholar 

  • Kennard WC, Phillips RL, Porter RA (2002) Genetic dissection of seed shattering, agronomic, and color traits in American wildrice (Zizania palustris var. interior L.) with a comparative map. Theor Appl Genet 105:1075–1086

    Article  PubMed  CAS  Google Scholar 

  • Kianian SF, Wu B-C, Fox SL, Rines HW, Phillips RL (1997) Aneuploid marker assignment in hexaploid oat with the C genome as a reference for determining remnant homoeology. Genome 40:386–396

    Article  PubMed  CAS  Google Scholar 

  • Kibite S (2001) Registration of seven pairs of oat near-isogenic lines, dwarf vs tall. Crop Sci 41:277–278

    Article  Google Scholar 

  • Kremer CA, Lee M, Holland JB (2001) A restriction fragment length polymorphism based linkage map of a diploid Avena recombinant inbred line population. Genome 44:192–204

    PubMed  CAS  Google Scholar 

  • Li X, Su RTC, Hsu H-T, Sze H (1998) The molecular chaperone calnexin associates with the vacuolar H+-ATPase from oat seedlings. Plant Cell 10:119–130

    Article  PubMed  CAS  Google Scholar 

  • Lin Y-R, Schertz KF, Patterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411

    PubMed  CAS  Google Scholar 

  • Locatelli AB, Federizzi LC, Milach SCK, Wight CP, Molnar SJ, Chapados JT, Tinker NA (2006) Loci affecting flowering time in oat under short-day conditions. Genome 49:1528–1538

    Article  PubMed  CAS  Google Scholar 

  • McCartney CA, Stonehouse RG, Rossnagel BG, Eckstein PE, Scoles GJ, Zatorski T, Beattie AD, Chong J (2011) Mapping of the oat crown rust resistance gene Pc91. Theor Appl Genet 122:317–325

    Article  PubMed  CAS  Google Scholar 

  • Milach SCK, Federizzi LC (2001) Dwarfing genes in plant improvement. Adv Agron 73:35–63

    Article  CAS  Google Scholar 

  • Milach SCK, Rines HW, Phillips RL (1997) Molecular genetic mapping of dwarfing genes in oat. Theor Appl Genet 95:783–790

    Article  CAS  Google Scholar 

  • Milach SCK, Rines HW, Phillips RL (2002) Plant height components and gibberellic acid response of oat dwarf lines. Crop Sci 42:1147–1154

    Article  CAS  Google Scholar 

  • O’Donoughue LS, Wang Z, Roder M, Kneen B, Leggett M, Sorrells ME, Tanksley SD (1992) An RFLP-based linkage map of oats based on a cross between two diploid taxa (Avena atlantica × A. hirtula). Genome 35:765–771

    Article  Google Scholar 

  • O’Donoughue LS, Kianian SF, Rayapati PJ, Penner GA, Sorrells ME, Tanksley SD, Phillips RL, Rines HW, Lee M, Fedak G, Molnar SJ, Hoffman D, Salas CA, Wu B, Autrique E, Van Deynze A (1995) A molecular linkage map of cultivated oat. Genome 38:368–380

    Article  PubMed  Google Scholar 

  • Obroucheva NV (2008) Cell elongation as an inseparable component of growth in terrestrial plants. Russ J Dev Biol 39:13–24

    Article  Google Scholar 

  • Orr W, Molnar SJ (2007) Development and mapping of PCR-based SCAR and CAPS markers linked to oil QTLs in oat. Crop Sci 47:848–852

    Article  CAS  Google Scholar 

  • Orr W, Molnar SJ (2008) Development of PCR-based SCAR and CAPS markers linked to β-glucan and protein content QTL regions in oat. Genome 51:421–425

    Article  PubMed  CAS  Google Scholar 

  • Rebetzke GJ, Ellis MH, Bonnett DG, Richards RA (2007) Molecular mapping of genes for Coleoptile growth in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:1173–1183

    Article  PubMed  CAS  Google Scholar 

  • Rooney WL, Rines HW, Phillips RL (1994) Identification of RFLP markers linked to crown rust resistance genes Pc91 and Pc92 in oat. Crop Sci 34:940–944

    Article  Google Scholar 

  • Rossini L, Vecchietti A, Nicoloso L, Stein N, Franzago S, Salamini F, Pozzi C (2006) Candidate genes for barley mutants involved in plant architecture: an in silico approach. Theor Appl Genet 112:1073–1085

    Article  PubMed  CAS  Google Scholar 

  • Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T, Chory J (1999) The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development. Genes Dev 13:3259–3270

    Article  PubMed  CAS  Google Scholar 

  • Sharma V, Kumari N, Tripathi BN (2009) V-ATPase in plants: an overview V-ATPase: structure and role in plants. Int J Biotechnol Biochem 5:93–106

    Google Scholar 

  • Siripoonwiwat W, O’Donoughue LS, Wesenberg D, Hoffman DL, Barbosa-Neto JF, Sorrells ME (1996) Chromosomal regions associated with quantitative traits in oat. J Agric Genomics 2. http://wheat.pw.usda.gov/jag/papers96/paper396/indexp396.html (published by permission of CAB International)

  • Tanhuanpaa P, Kalendar R, Laurila J, Schulman AH, Manninen O, Kiviharju E (2006) Generation of SNP markers for short straw in oat (Avena sativa L.). Genome 49:282–287

    Article  PubMed  CAS  Google Scholar 

  • Teulat B, Merah O, Souyris I, This D (2001) QTLs for agronomic traits from a Mediterranean barley progeny grown in several environments. Theor Appl Genet 103:774–787

    Article  CAS  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Tinker NA, Kilian A, Wight CP, Heller-Uszynska K, Wenzl P, Rines HW, Bjornstad A, Howarth CJ, Jannink J-L, Anderson JM, Rossnagel BG, Stuthman DD, Sorrells ME, Jackson EW, Tuvesson S, Kolb FL, Olsson O, Federizzi LC, Carson ML, Ohm HW, Molnar SJ, Scoles GJ, Eckstein PE, Bonman JM, Ceplitis A, Langdon T (2009) New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics 10:39

    Article  PubMed  Google Scholar 

  • Ward JM, Reinders A, Hsu H-T, Sze H (1992) Dissociation and reassembly of the vacuolar H+-ATPase complex from oat roots. Plant Physiol 99:161–169

    Article  PubMed  CAS  Google Scholar 

  • Wight CP, Tinker NA, Kianian SF, Sorrells ME, O’Donoughue LS, Hoffman DL, Groh S, Scoles GJ, Li CD, Webster FH, Phillips RL, Rines HW, Livingston SM, Armstrong KC, Fedak G, Molnar SJ (2003) A molecular marker map in ‘Kanota’ × ‘Ogle’ hexaploid oat (Avena spp.) enhanced by additional markers and a robust framework. Genome 46:28–47

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Kaeppler HF (2003) A genetic linkage map for hexaploid, cultivated oat (Avena sativa L.) based on an intraspecific cross ‘Ogle/MAM17–5’. Theor Appl Genet 107:26–35

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was made possible by generous funding from Quaker Oats (a division of Pepsico), by QTG Canada, and by the Agriculture and Agri-Food Canada Matching Investment Initiative. We thank Drs. Andrzej Kilian and Eric Huttner of Diversity Arrays Pty. Ltd. for DArT genotyping. We appreciate the encouragement of Drs. Burrows, McElroy, and Tinker, and our oat colleagues at AAFC. We also wish to thank the anonymous journal reviewers for their insightful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Molnar.

Additional information

Communicated by J. Snape.

S. Kibite: Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molnar, S.J., Chapados, J.T., Satheeskumar, S. et al. Comparative mapping of the oat Dw6/dw6 dwarfing locus using NILs and association with vacuolar proton ATPase subunit H. Theor Appl Genet 124, 1115–1125 (2012). https://doi.org/10.1007/s00122-011-1773-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1773-7

Keywords

Navigation