Skip to main content
Log in

A major locus qS12, located in a duplicated segment of chromosome 12, causes spikelet sterility in an indica-japonica rice hybrid

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Chromosome segment duplications are integral in genome evolution by providing a source for the origin of new genes. In the rice genome, besides an ancient polyploidy event known in the rice common ancestor, it had been identified that there was a special segmental duplication involving chromosomes 11 and 12, but the biological role of this duplication remains unknown. In this study, by using a set of chromosome segment substitution lines (CSSLs) and near isogenic lines (NILs) derived from the indica cultivar 9311 and japonica cultivar Nipponbare, a major QTL (qS12) resulting in hybrid male sterility was mapped within ~400 kb region adjacent to the special duplicated segment on the short arm of chromosome 12. Compared to the japonica cultivar Nipponbare, the two sides of the qS12 candidate region were inverted in the indica cultivar 9311. Among 47 of the 111 rice genotypes evaluated by molecular markers, the inverted sides were detected, and found completely homologous to indica cultivar 9311. These results suggested that the two inverted sides protect the sequence in the qS12 regions from recombination. On the short-arm of chromosome 12, two QTLs S-e and S25, in addition to qS12, were previously detected as a distinct segregation distortion and pollen semi-sterility loci. We propose these three hybrid sterility loci are the same locus, and the duplicated segment on chromosome 12 may play a prominent role in diversification, i.e., sub-speciation of cultivated rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CSSL:

Chromosome segment substitution line

CAPS:

Cleaved amplified polymorphic sequence

ICIM:

Inclusive composite interval mapping

ICIM-ADD:

ICIM of QTLs with additive effects

Mb:

Mega base pairs

MYA:

Million years ago

NIL:

Near isogenic line

PVE:

Phenotypic variation effect

SMA:

Single marker analysis

SSR:

Simple sequence repeat

STS:

Sequence-tagged site

WGD:

Whole genome duplication

References

  • Chang TT (1976) The origin, evolution, cultivation, dissemination, and diversifiction of Asian and African rices. Euphytica 25:435–441

    Article  Google Scholar 

  • Chen J, Ding J, Ouyang Y, Du H, Yang J, Cheng K, Zhao J, Qiu S, Zhang X, Yao J, Liu K, Wang L, Xu C, Li X, Xue Y, Xia M, Ji Q, Lu J, Xu M, Zhang Q (2008) A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indicajaponica hybrids in rice. Proc Natl Acad Sci USA 105:11436–11441

    Article  PubMed  CAS  Google Scholar 

  • Gong Z, Liu X, Tang D, Yu H, Yi C, Cheng Z, Gu M (2010) Non-homologous chromosome pairing and crossover formation in haploid rice meiosis. Chromosoma 120:47–60

    Article  PubMed  Google Scholar 

  • Harushima Y, Nakagahra M, Yano M, Sasaki T, Kurata N (2002) Diverse variation of reproductive barriers in three intraspecific rice crosses. Genetics 160:313–322

    PubMed  Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  PubMed  CAS  Google Scholar 

  • Ikehashi H, Araki H (1986) Genetics of F1 sterility in remote crosses of rice. In: Rice Genetics. IRRI, PO Box 933, Manila, Philippines: 119-130

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jacquemin J, Laudie′ M, Cooke R (2009) A recent duplication revisited: phylogenetic analysis reveals an ancestral duplication highly-conserved throughout the Oryza genus and beyond. BMC Plant Biol 9:146

    Article  PubMed  Google Scholar 

  • Ji Q, Lu J, Chao Q, Gu M, Xu M (2005) Delimiting a rice wide-compatibility gene S 5 n to a 50 kb region. Theor Appl Genet 111:1495–1503

    Article  PubMed  CAS  Google Scholar 

  • Ji Q, Lu J, Chao Q, Zhang Y, Zhang M, Gu M, Xu M (2010) Two sequence alterations, a 136 bp InDel and an A/C polymorphic site, in the S5 locus are associated with spikelet fertility of indica-japonica hybrid in rice. J Genet Genomics 37:57–68

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Liu L (2006) New evidence for the origins of sedentism and rice domestication in the lower Yangzi River, China. Antiquity 80:355–361

    Google Scholar 

  • Jiang H, Liu D, Gu Z, Wang W (2007) Rapid evolution in a pair of recent duplicate segments of rice. J Exp Zool (Mol Dev Evol) 308B:50–57

    Article  CAS  Google Scholar 

  • Johnson NA (2010) Hybrid incompatibility genes: remnants of a genomic battlefield? Trends Genet 26:317–325

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Yoshimura A (2001) Linkage analysis of an F1 sterility gene in Japonica/Indica cross of rice. Rice Genet Newsl 2001

  • Liu K, Wang J, Li H, Xu C, Liu A, Li X, Zhang Q (1997) A genome-wide analysis of wide compatibility in rice and the precise location of the S5 locus in the molecular map. Theor Appl Genet 95:809–814

    Article  CAS  Google Scholar 

  • Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci USA 103:9578–9583

    Article  PubMed  CAS  Google Scholar 

  • Long Y, Zhao L, Niu B, Su J, Wu H, Chen Y, Zhang Q, Guo J, Zhuang C, Mei M, Xia J, Wang L, Wu H, Liu Y-G (2008) Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci USA 105:18871–18876

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2003) The evolutionary demography of duplicate genes. J Struct Func Genomics 3:35–44

    Article  CAS  Google Scholar 

  • Lynch M, O’Hely M, Walsh B, Force A (2001) The probability of preservation of a newly arisen gene duplicate. Genetics 159:1789–1804

    PubMed  CAS  Google Scholar 

  • Mayr E (1942) Systematics and the Origin of Species. Columbia University Press, New York

    Google Scholar 

  • McCouch S, Teytelman L, Xu Y, Lobos K, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:257–279

    Article  PubMed  CAS  Google Scholar 

  • McLysaht A, Hokamp K, Wolfe K (2002) Extensive genomic duplication during early chordate evolution. Nat Genet 31:200–204

    Article  Google Scholar 

  • Murray M, Thompson W (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nagamura Y, Inoue T, Antonio BA, Shimano T, Kajiya H, Shomura A, Lin SY, Kuboki Y, Harushima Y (1995) Conservation of duplicated segments between rice chromosomes 11 and 12. Breed Sci 45:373–376

    CAS  Google Scholar 

  • Ohno S, Wolf U, Atkin NB (1968) Evolution from fish to mammals by gene duplication. Hereditas 59:169–187

    Article  PubMed  CAS  Google Scholar 

  • Oka HI (1953) The mechanism of sterility in the intervarietal hybrid. (Phylogenetic differentiation of the cultivated rice plants VI). Jpn J Breed 2:217–224

    Google Scholar 

  • Oka HI (1974) Analysis of genes controlling F1 sterility in rice by the use of isogenic lines. Genetics 77:521–534

    PubMed  CAS  Google Scholar 

  • Oka HI (1988) Origin of cultivated rice: development in crop species. Jpn Sci Soc Press, Tokyo

    Google Scholar 

  • Orr HA, Masly JP, Presgraves DC (2004) Speciation genes. Curr Opin Genet Dev 14:675–679

    Article  PubMed  CAS  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR Rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:D883–D887

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Peterson DG, Estill JC, Chapman BA (2003) Structure and evolution of cereal genomes. Curr Opin Genet Dev 13(6):644–665

    Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann Rm, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Prince V, Pickett F (2002) Splitting pairs: The diverging fates of duplicated genes. Nat Rev Genet 3:827–837

    Article  PubMed  CAS  Google Scholar 

  • Qiu SQ, Liu K, Jiang JX, Song X, Xu CG, Li XH, Zhang Q (2005) Delimitation of the rice wide compatibility gene S5 n to a 40-kb DNA fragment. Theor Appl Genet 111:1080–1086

    Article  PubMed  CAS  Google Scholar 

  • Sano Y, Sano R, Eiguchi M, Hirano HY (1994) Gamete eliminator adjacent to the Wx Locus as revealed by pollen analysis in rice. J Hered 85:310–312

    Google Scholar 

  • Sawamura N, Sano Y (1996) Chromosomal location of gamete eliminator, S11(t), found in an Indica-Japonica hybrid. Rice Genet Newsl 13:70–71

    Google Scholar 

  • Shen Y, Jiang H, Jin J, Zhang Z, Xi B, He Y, Wang G, Wang C, Qian L, Li X, Yu Q, Liu H, Chen D, Gao J, Huang H, Shi T, Yang Z (2004) Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 135:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • The Rice Chromosomes 11, 12 Sequencing Consortia (2005) The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biol 3:20

    Article  Google Scholar 

  • Tocchini-Valentini GD, Fruscoloni P, Tocchini-Valentini GP (2005) Structure, function, and evolution of the tRNA endonucleases of Archaea: an example of subfunctionalization. Proc Natl Acad Sci USA 102:8933–8938

    Article  PubMed  CAS  Google Scholar 

  • Wan J, Ikehashi H, Sakai M, Horisue H, Imbe T (1998) Mapping of hybrid sterility genes S17 of rice (Oryza sativa L.) by isozyme and RFLP markers. Rice Genet Newsl 15:151–154

    Google Scholar 

  • Wang J, Liu K, Xu C, Li X, Zhang Q (1998) The high level of wide compatibility of variety ‘Dular’ has a complex genetic basis. Theor Appl Genet 97:407–412

    Article  CAS  Google Scholar 

  • Wang X, Shi X, Hao B, Ge S, Luo J (2005a) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhao X, Zhu J, Wu W (2005b) Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.). DNA Res 12:417–427

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Wan X, Crossa J, Crouch J, Weng J, Zhai H, Wan J (2006) QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res 88:93–104

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Tang H, Bowers J, Feltus FA, Paterson AH (2007) Extensive concerted evolution of rice paralogs and the road to regaining independence. Genetics 177:1753–1763

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Tang H, Bowers JE, Paterson AH (2009) Comparative inference of illegitimate recombination between rice and sorghum duplicated genes produced by polyploidization. Genome Res 19:1026–1032

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Tang H, Paterson AH (2011) Seventy million years of concerted evolution of a homoeologous chromosome pair, in parallel, in major Poaceae lineages. Plant Cell 23:27–37

    Article  PubMed  CAS  Google Scholar 

  • Win KT, Kubo T, Miyazaki Y, Doi K, Yamagata Y, Yoshimura A (2009) Identification of two loci causing F1 pollen sterility in inter- and intraspecific crosses of rice. Breeding Sci 59:411–418

    Article  CAS  Google Scholar 

  • Wu J, Kurata N, Tanoue H, Shimokawa T, Umehara Y, Yano M, Sasaki T (1998) Physical mapping of duplicated genomic regions of two chromosome ends in rice. Genetics 150:1595–1603

    PubMed  CAS  Google Scholar 

  • Xu J, Zhao Q, Du P, Xu C, Wang B, Feng Q, Liu Q, Tang S, Gu M, Han B, Liang G (2010) Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.). BMC Genomics 11:656

    Article  PubMed  CAS  Google Scholar 

  • Yan C, Liang G, Zhu L, Gu M (2000) RFLP analysis on wide compatibility genes in rice variety ‘Dular’ of ecotype Aus (in Chinese). Acta Genet Sin 27:409–417

    PubMed  CAS  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C, Zhang J, Zhang Y, Li R, Xu Z, Li S, Li X, Zheng H, Cong L, Lin L, Yin J, Geng J, Li G, Shi J, Liu J, Lv H, Li J, Wang J, Deng Y, Ran L, Shi X, Wang X, Wu Q, Li C, Ren X, Wang J, Wang X, Li D, Liu D, Zhang X, Ji Z, Zhao W, Sun Y, Zhang Z, Bao J, Han Y, Dong L, Ji J, Chen P, Wu S, Liu J, Xiao Y, Bu D, Tan J, Yang L, Ye C, Zhang J, Xu J, Zhou Y, Yu Y, Zhang B, Zhuang S, Wei H, Liu B, Lei M, Yu H, Li Y, Xu H, Wei S, He X, Fang L, Zhang Z, Zhang Y, Huang X, Su Z, Tong W, Li J, Tong Z, Li S, Ye J, Wang L, Fang L, Lei T, Chen C, Chen H, Xu Z, Li H, Huang H, Zhang F, Xu H, Li N, Zhao C, Li S, Dong L, Huang Y, Li L, Xi Y, Qi Q, Li W, Zhang B, Hu W, Zhang Y, Tian X, Jiao Y, Liang X, Jin J, Gao L, Zheng W, Hao B, Liu S, Wang W, Yuan L, Cao M, McDermott J, Samudrala R, Wang J, Wong GK-S, Yang H (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:266–281

    Article  CAS  Google Scholar 

  • Zhang G, Lu Y (1996) Genetics of F1 pollen sterility in Oryza sativa. In: Khush GS (ed) Rice Genetics III. IRRI, Manila, Philippines, pp 418–422

    Chapter  Google Scholar 

  • Zhang Z, Deng Y, Tan J, Hu S, Yu J, Xue Q (2007) A genome-wide microsatellite polymorphism database for the Indica and Japonica Rice. DNA Res 14:37–45

    Article  PubMed  Google Scholar 

  • Zhao ZG, Wang CM, Jiang L, Zhu SS, Ikehashi H, Wan JM (2006) Identification of a new hybrid sterility gene in rice (Oryza sativa L.). Euphytica 151:331–337

    Article  CAS  Google Scholar 

  • Zhu S, Wang C, Zheng T, Zhao Z, Ikehashi H, Wan J (2005) A new gene located on chromosome 2 causing hybrid sterility in a remote cross of rice. Plant Breed 124:440–445

    Article  CAS  Google Scholar 

  • Zhu W, Li W, Ding X, Zhang Z, Zeng R, Zhu H, Zhang G (2008) Preliminary Identification of Pollen Sterility Gene S-e in Oryza Sativa (in Chinese). J South Chin Agric University 29:1–5

    Google Scholar 

  • Zhuang CX, Fu Y, Zhang GQ, Mei MT, Lu YG (2002) Molecular mapping of S-c, an F-1 pollen sterility gene in cultivated rice. Euphytica 127:133–138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Basic Research Program (2007CB109005 and 2011CB100202), the National Special Program for Transgenic Research (2009ZX08009-008B), the National Natural Science Foundation (30521004 and 30971741), the Priority Academic Program Development from Jiangsu Government, and the Ministry of Education (307018 and NCET-07-0736) of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiao-Quan Liu or Yang-Sheng Li.

Additional information

Communicated by A. Paterson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2,802 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Zhang, CQ., Sun, ZZ. et al. A major locus qS12, located in a duplicated segment of chromosome 12, causes spikelet sterility in an indica-japonica rice hybrid. Theor Appl Genet 123, 1247–1256 (2011). https://doi.org/10.1007/s00122-011-1663-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1663-z

Keywords

Navigation