Skip to main content
Log in

Molecular characterization and comparative transcriptional analysis of LMW-m-type genes from wheat (Triticum aestivum L.) and Aegilops species

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Twelve new LMW-GS genes were characterized from bread wheat (Triticum aestivum L.) cultivar Zhongyou 9507 and five Aegilops species by AS-PCR. These genes belong to the LMW-m type and can be classified into two subclasses designated as 1 and 2, with the latter predominant in both wheat and related wild species. Genes in the two subclasses were significantly different from each other in SNPs and InDels variations. In comparison to subclass 1, the structural features of subclass 2 differs in possessing 21 amino acid residue substitutions, two fragment deletions (each with 7 amino acid residues), and a double-residue deletion and two fragment insertions (12 and 2–5 residues). Phylogenetic analysis revealed that the two subclasses were divergent at about 6.8 MYA, earlier than the divergence of C, M, N, Ss and U genomes. The Ss and B genomes displayed a very close relationship, whereas the C, M, N and U genomes appeared to be related to the D genome of bread wheat. The presently characterized genes ZyLMW-m1 and ZyLMW-m2 from Zhongyou 9507 were assigned to the D genome. Moreover, these genes were expressed successfully in Escherichia coli. Their transcriptional levels during grain developmental stages detected by quantitative real-time PCR (qRT-PCR) showed that both genes started to express at 5 days post-anthesis (DPA), reaching the maximum at 14 DPA after which their expressions decreased. Furthermore, the expression level of ZyLMW-m2 genes was much higher than that of ZyLMW-m1 during all grain developmental stages, suggesting that the expression efficiency of LMW-GS genes between the two subclasses was highly discrepant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altenbach SB (1998) Quantification of individual low-molecular-weight glutenin subunit transcripts in developing wheat grains by competitive RT-PCR. Theor Appl Genet 97:413–421

    Article  CAS  Google Scholar 

  • An X, Zhang Q, Yan Y, Li Q, Zhang Y, Wang A, Pei Y, Tian J, Wang H, Hsam SLK, Zeller FJ (2006) Cloning and molecular characterization of three novel LMW-i glutenin subunit genes from cultivated einkorn (Triticum monococcum L.). Theor Appl Genet 113:383–395

    Article  CAS  PubMed  Google Scholar 

  • Anderson OD, Greene FC (1989) The characterization and comparative analysis of high-molecular-weight glutenin genes from genomes A and B of a hexaploid bread wheat. Theor Appl Genet 77:689–700

    Article  CAS  Google Scholar 

  • Cassidy BG, Dvorak J, Anderson OD (1998) The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theor Appl Genet 96:743–750

    Article  CAS  Google Scholar 

  • Colot V, Robert LS, Kavanagh TA, Bevan MW, Thompson RD (1987) Localization of sequences in wheat endosperm protein genes which confer tissue-specific expression in tobacco. EMBO J 6:3559–3564

    CAS  PubMed  Google Scholar 

  • D’Ovidio R, Masci S (2004) The low-molecular-weight glutenin subunits of wheat gluten. J Cereal Sci 39:321–339

    Article  Google Scholar 

  • D’Ovidio R, Marchitelli C, Ercoli Cardelli L, Porceddu E (1999) Sequence similarity between allelic Glu-B3 genes related to quality properties of durum wheat. Theor Appl Genet 98:455–461

    Article  Google Scholar 

  • Fernandez-Calvin B, Orellana (1990) High molecular weight glutenin subunit variation in the Sitopsis section of Aegilops. Implications for the origin of the B genome of wheat. Heredity 65:455–463

    Article  CAS  Google Scholar 

  • Gachon C, Mingam A, Charrier B (2004) Real-time PCR: what relevance to plant studies? J Exp Bot 55:1445–1454

    Article  CAS  PubMed  Google Scholar 

  • Gianibelli MC, Larroque OR, MacRichie F, Wrigley CW (2001) Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chem 78:635–646

    Article  CAS  Google Scholar 

  • Grimwade B, Tatham AS, Freedman RB, Shewry PR, Napier JA (1996) Comparison of the expression patterns of genes coding for wheat gluten proteins and proteins involved in the secretory pathway in developing caryopses of wheat. Plant Mol Biol 30:1067–1073

    Article  CAS  PubMed  Google Scholar 

  • Gupta RM, Masci S, Lafiandra D, Bariana HS, MacRitchie F (1996) Accumulation of protein subunits and their polymers in developing grains of hexaploid wheats. J Exp Bot 47:1377–1385

    Article  CAS  Google Scholar 

  • Harberd NP, Bartels D, Thompson RD (1985) Analysis of the gliadin multigene loci in bread wheat using nullisomic-tetrasomic lines. Mol Gene Genet 198:234–242

    Article  CAS  Google Scholar 

  • He ZH, Yang J, Zhang Y, Quail KJ, Pena RJ (2004) Pan bread and dry white Chinese noodle quality in Chinese winter wheats. Euphytica 139:257–267

    Article  Google Scholar 

  • Huang XQ, Cloutier S (2008) Molecular characterization and genomic organization of low molecular weight glutenin subunit genes at the Glu-3 loci in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 116:953–966

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  CAS  PubMed  Google Scholar 

  • Ikeda TM, Nagamine T, Fukuoka H, Yano H (2002) Identification of new low-molecular-weight glutenin subunit genes in wheat. Theor Appl Genet 104:680–687

    Article  CAS  PubMed  Google Scholar 

  • Jiang CX, Pei YH, Zhang YZ, Li XH, Yao DN, Yan YM, Hsam SLK, Zeller FJ (2008) Molecular cloning and characterization of four novel LMW glutenin subunit genes from Aegilops longissima, Triticum dicoccoides and T. zhukovskyi. Hereditas 145:92–98

    Article  PubMed  Google Scholar 

  • Johal J, Gianibelli MC, Rahman S, Morell MK, Gale KR (2004) Characterization of low-molecular-weight glutenin genes in Aegilops tauschii. Theor Appl Genet 109:1028–1040

    Article  CAS  PubMed  Google Scholar 

  • Kawaura K, Mochida K, Ogihara Y (2005) Expression profile of two storage-protein gene families in hexaploid wheat revealed by large-scale analysis of expressed sequence tags. Plant Physiol 139:1870–1880

    Article  PubMed  Google Scholar 

  • Lee YK, Ciaffi M, Appels R, Morell MK (1999) The low-molecular-weight glutenin subunit proteins of primitive wheats. II. The genes from A-genome species. Theor Appl Genet 98:126–134

    Article  CAS  Google Scholar 

  • Lew EJL, Kuzmicky DD, Kasarda DD (1992) Characterization of low molecular weight glutenin subunits by reversed-phase high-performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and N-terminal amino acid sequencing. Cereal Chem 69:508–515

    CAS  Google Scholar 

  • Li XH, Zhang YZ, Gao LY, Wang AL, Ji KM, He ZH, Appel R, Ma WJ, Yan YM (2007) Molecular cloning, heterologous expression, and phylogenetic analysis of a novel y-type HMW glutenin subunit gene from the G genome of Triticum timopheevi. Genome 50:1130–1140

    Article  CAS  PubMed  Google Scholar 

  • Li XH, Ma W, Gao LY, Zhang YZ, Wang AL, Ji KM, Wang K, Appels R, Yan Y (2008) A novel chimeric LMW-GS gene from the wild relatives of wheat Ae. kotschyi and Ae. juvenalis: evolution at the Glu-3 loci. Genetics 180:93–101

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wang RC, Jia J (1999) Genome relationship among Sitopsis species of Aegilops and the B/G genome of Triticum assessed by RAPD markers. In: Slinkard AE (ed) Proceedings of the 9th International Wheat Genetics Symposium. University Extension Press, Saskatoon, pp 79–81

  • Long H, Yan ZH, Wei YM, Zheng YL (2004) Molecular cloning of a novel low-molecular-weight glutenin subunit gene from wheat (Triticum aestivum L.), Variety ‘Chuannong 16’. J Genet Genomics 30:1179–1184

    CAS  Google Scholar 

  • Maruyama-Funatsuki W, Takata K, Funatsuki H, Tabiki T, Ito M, Nishio Z, Kato A, Saito K, Yahata E, Saruyama H, Yamauchi H (2005) Identification and characterization of a novel LMW-s glutenin gene of a Canadian Western extra-strong wheat. J Cereal Sci 41:47–57

    Article  CAS  Google Scholar 

  • Masci S, D’Ovidio R, Lafiandra D, Kasarda DD (1998) Characterization of a low-molecular-weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer. Plant Physiol 118:1147–1158

    Article  CAS  PubMed  Google Scholar 

  • Ng PKW, Slominski E, Johnson WJ, Bushuk W (1991) Changes in wheat endosperm proteins during grain maturation. In: Bushuk W, Tkachuk R (eds) Gluten proteins. American Association of Cereal Chemistry, St. Paul pp 740–754

  • Ozdemir N, Cloutier S (2005) Expression analysis and physical mapping of low-molecular-weight glutenin loci in hexaploid wheat (Triticum aestivum L.). Genome 48:401–410

    Article  CAS  PubMed  Google Scholar 

  • Panozzo J, Eagles HA, Wootton M (2001) Changes in protein composition during grain development in wheat. Aust J Agric Res 52:485–493

    Article  CAS  Google Scholar 

  • Pei YH, Wang AL, An XL, Li XH, Zhang YZ, Huang XQ, Yan YM (2007) Characterization and comparative analysis of three low molecular weight glutenin C-subunit genes isolated from Aegilops tauschii. Can J Plant Sci 87:273–280

    CAS  Google Scholar 

  • Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 39:70–82

    Article  CAS  PubMed  Google Scholar 

  • Pistόn F, Martín A, Dorado G, Barro F (2004) Cloning and characterization of a gamma-3 hordein mRNA (cDNA) from Hordeum chilense (Roem. et Schult.). Theor Appl Genet 108:1359–1365

    Article  Google Scholar 

  • Pistόn F, Martín A, Dorado G, Barro F (2005) Cloning and molecular characterization of B-hordeins from Hordeum chilense (Roem. et Schult.). Theor Appl Genet 111:551–560

    Article  Google Scholar 

  • Pistόn F, Martín A, Dorado G, Barro F (2006) Cloning of nine r-gliadin mRNAs (cDNAs) from wheat and the molecular characterization of comparative transcript levels of g-gliadin subclasses. J Cereal Sci 43:120–128

    Article  Google Scholar 

  • Pistόn F, León E, Lazzeri PA, Barro F (2008) Isolation of two storage protein promoters from Hordeum chilense and characterization of their expression patterns in transgenic wheat. Euphytica 162:371–379

    Article  Google Scholar 

  • Sabelli PA, Shewry PR (1991) Characterization and organization of gene families at the Gli-1 loci of bread and durum wheats by restriction fragment analysis. Theor Appl Genet 83:209–216

    Article  Google Scholar 

  • Schultz JF, Milpetz PB, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864

    Article  CAS  PubMed  Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ, Long H, Zheng YL, Yan ZH, Wei YM, Lan XJ (2005) Cloning and analysis of LMW-GS genes from Triticum aestivum ssp. Tibetanum Shao. J Genet Genomics 32:86–93

    CAS  Google Scholar 

  • Whelan JA, Russell NB, Whelan MA (2003) A method for the absolute quantification of cDNA using real-time PCR. J Immunol Methods 278:261–269

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Yahiaoui N, Guyot R, Schalgenhauf E, Liu ZD, Dubcovsky J, Keller B (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell 15:1186–1197

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Hsam SLK, Yu JZ, Jiang Y, Zeller FJ (2003) Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by Sodium Dodecyl Sulphate (SDS-PAGE), Acid Polyacrylamide Gel (A-PAGE) and Capillary Electrophoresis. Euphytica 130:377–385

    Article  CAS  Google Scholar 

  • Yan Y, Zheng J, Xiao Y, Yu J, Hu Y, Cai M, Li Y, Hsam SLK, Zeller FJ (2004) Identification and molecular characterization of a novel y-type Glu-D t 1 glutenin gene of Aegilops tauschii. Theor Appl Genet 108:1349–1358

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li Q, Yan Y, Zheng J, An X, Xiao Y, Wang A, Wang H, Hsam SLK, Zeller FJ (2006) Molecular characterization and phylogenetic analysis of a novel glutenin gene (Dy10.1 t) from Aegilops tauschii. Genome 49:735–745

    Article  CAS  PubMed  Google Scholar 

  • Zhang YZ, Li XH, Wang AL, An XL, Zhang Q, Pei YH, Gao LY, Ma WJ, Appels R, Yan YM (2008) Novel x-type high-molecular-weight glutenin genes from Aegilops tauschii and their implications on the wheat origin and evolution mechanism of Glu-D1-1 proteins. Genetics 178:23–33

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Wang R, Guo A, Hu S, Sun G (2004) Development of primers specific for LMW-GS genes located on chromosome 1D and molecular characterization of a gene from Glu-D3 complex locus in bread wheat. Hereditas 141:193–198

    Article  PubMed  Google Scholar 

  • Zhao XL, Xia XC, He ZH, Gale KR, Lei ZS, Appels R, Ma W (2006) Characterization of three low-molecular-weight Glu-D3 subunit genes in common wheat. Theor Appl Genet 113:1247–1259

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by grants from the National Natural Science Foundation of China (30830072, 30771334), the Chinese Ministry of Science and Technology (2009CB118303, 2006AA10Z186) and the Key Developmental Project of Science and Technology, Beijing Municipal Commission of Education (KZ200910028003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. L. K. Hsam or Y. M. Yan.

Additional information

Communicated by X. Xia.

X. H. Li, K. Wang, and S. L. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X.H., Wang, K., Wang, S.L. et al. Molecular characterization and comparative transcriptional analysis of LMW-m-type genes from wheat (Triticum aestivum L.) and Aegilops species. Theor Appl Genet 121, 845–856 (2010). https://doi.org/10.1007/s00122-010-1354-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1354-1

Keywords

Navigation