Skip to main content
Log in

Analysis of introgression of Aegilops ventricosa Tausch. genetic material in a common wheat background using C-banding

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Seven Triticum aestivum (cv. Moisson)–Aegilops ventricosa addition lines and four VPM-1 lines were studied by C-banding, and compared with the parental common wheat cultivars Marne-Desprez (hereafter Marne), Moisson, and A. ventricosa lines 10 and 11. All of the VPM-1 lines had similar C-banding patterns and carried the same major 5B:7B translocation as the parental Marne cultivar. According to the C-banding analysis, the VPM-1 lines carry a complete 7D(7Dv) chromosome substitution and a translocation involving the 5D and 5Dv chromosomes. However, the translocation of the 2Nv/6Nv chromosome of A. ventricosa to the short arm of the 2A chromosome of wheat that had been identified in an earlier study using molecular analysis (Bonhomme A, Gale MD, Koebner RMD, Nicolas P, Jahier J, Bernard M in Theor Appl Genet 90:1042–1048, 1995; Jahier J, Abelard P, Tanguy AM, Dedryver F, Rivoal R, Khatkar S, Bariana HS Plant Breed 120:125–128, 2001) was not detected in our study. However, the appearance of a small pAs1 site at the tip of the chromosome 2A short arm in VPM-1 could be indicative of a minor translocation of the A. ventricosa chromosome. The 5B:7B translocation was also found in all seven T. aestivum–A. ventricosa addition lines, although it was not present in the parental common wheat cultivar Moisson. These lines showed different introgression patterns; besides the addition of the five Nv-genome chromosomes, they also possessed different D(Dv) genome substitutions or translocations. A whole arm translocation between chromosome 1Nv and 3Dv was identified in lines v86 and v137, and also in the A. ventricosa line 10. This observation lends further support to the idea that A. ventricosa line 10, rather than line 11, was used to develop a set of wheat A. ventricosa addition lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Badaeva ED, Sozinova LF, Badaev NS, Muravenko OV, Zelenin AV (1990) “Chromosomal passport” of Triticum aestivum L. em Thell. cv. Chinese Spring and standardization of chromosomal analysis of cereals. Cereal Res Commun 18:273–281

    Google Scholar 

  • Badaeva ED, Badaev NS, Gill BS, Filatenko AA (1994) Intraspecific karyotype divergence in Triticum araraticum (Poaceae). Plant Syst Evol 192:117–145

    Article  Google Scholar 

  • Badaeva ED, Amosova AV, Muravenko OV, Samatadze TE, Chikida NN, Zelenin AV, Friebe B, Gill BS (2002) Genome differentiation in Aegilops. 3. Evolution of the D-genome cluster. Plant Syst Evol 231:163–190

    Article  CAS  Google Scholar 

  • Badaeva ED, Dedkova OS, Gay G, Pukhalskyi VA, Zelenin AV, Bernard S, Bernard M (2007) Chromosomal rearrangements in wheat: their types and distribution. Genome 50:907–926

    Article  PubMed  CAS  Google Scholar 

  • Bardsley D, Cuadrado A, Jack P, Harrison G, Castilho A, Heslop-Harrison JS (1999) Chromosome markers in the tetraploid wheat Aegilops ventricosa analysed by in situ hybridization. Theor Appl Genet 99:300–304

    Article  Google Scholar 

  • Bariana HS, McIntosh RA (1994) Characterisation and origin of rust and powdery mildew resistance genes in VPM1 wheat. Euphytica 76:53–61

    Article  Google Scholar 

  • Bartos P, Bartoš P, Ovesná J, Hanzalová A, Chrpová J, Dumalasová V, Škorpík M, Šíp V (2004) Presence of a translocation from Aegilops ventricosa in wheat cultivars registered in the Czech Republic. Czech J Genet Plant Breed 40:31–35

    Google Scholar 

  • Bedbrook RJ, Jones J, O’Dell M, Thompson RJ, Flavell RB (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560

    Article  PubMed  CAS  Google Scholar 

  • Belay G, Merker A (1999) C-band polymorphism and chromosomal rearrangements in tetraploid wheat (Triticum turgidum L.) landraces from Ethiopia. Wheat Inf Serv 88:6–14

    Google Scholar 

  • Bonhomme A, Gale MD, Koebner RMD, Nicolas P, Jahier J, Bernard M (1995) RFLP analysis of an Aegilops ventricosa chromosome that carries a gene conferring resistance to leaf rust (Puccinia recondita) when transferred to hexaploid wheat. Theor Appl Genet 90:1042–1048

    Article  CAS  Google Scholar 

  • Bourgeois SF, Dosba F, Dounaire G (1978) Analyse et identification des translocation reciproques presented chez le geniteur VPM et les varietes ‘Marne’, ‘Moisson’ et ‘Roazon’. Ann Amelior Plantes 28:411–429

    Google Scholar 

  • Cunado N, Cermeno MC, Orellana J (1986) Interactions between wheat, rye and Aegilops ventricosa chromosomes on homologous and homoeologous pairing. Heredity 56:219–226

    Article  Google Scholar 

  • Delibes A, Otero C, Garcia-Olmedo F, Dosba F (1981) Biochemical markers associated with two Mv chromosomes from Aegilops ventricosa in wheat-Aegilops addition lines. Theor Appl Genet 60:5–10

    Article  CAS  Google Scholar 

  • Delibes A, Moral JD, Martín-Sanchez JA, Mejias A, Gallego M, Casado D, Sin E, López-Braña I (1997) Hessian fly-resistance gene transferred from chromosome 4Mv of Aegilops ventricosa to Triticum aestivum. Theor Appl Genet 94:858–864

    Article  CAS  Google Scholar 

  • Dosba F (1980) Use of Ae. speltoides and nulli 5B Tetra 5D “Chinese Spring” for inducing homoeologous recombinations in a wheat-Aegilops addition line. Wheat Inf Serv 51:1

    Google Scholar 

  • Dosba F (1982) Les lignées d’addition blé—Aegilops ventricosa. III. Extraction et identification des lignées sur cytoplasme Aegilops ventricosa. Agronomie 2:469–478

    Article  Google Scholar 

  • Dosba F, Doussinault G (1981) Les lignées d’addition blé—Aegilops ventricosa. I. Étude du comportement vis-à-vis du piétin-verse des différentes lignées obtenues. Agronomie 1:503–511

    Article  Google Scholar 

  • Dosba F, Tanguy AM, Rivoal R (1978) Extraction, identification and utilization of the addition lines T. aestivum—Ae. ventricosa. In: Ramanujan S (ed) Proceedings of the 5th international wheat genetics symposium, 23–28 February 1978, Indian Society of Genetics and Plant Breeding, New Delhi, pp 332–337

  • Dosba F, Tanguy AM, Douaire G (1980) Study of characteristics linked to an Mv chromosome of Aegilops ventricosa in an addition line wheat × Aegilops. Cereal Res Commun 8:501–507

    Google Scholar 

  • El Khlifi OK, Sharma H, Hasna C, Benlhabib O (2003) Transfer of Hessian fly resistance from Moroccan Aegilops ventricosa to durum wheat. Acta Bot Gallica 150:411–419

    Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Gale MD, Scott PR, Law CN, Ainsworth CC, Hollins TW, Worland AJ (1984) An alpha amylase gene from Aegilops ventricosa transferred to bread wheat together with a factor for eyespot resistance. Heredity 52:431–435

    Article  CAS  Google Scholar 

  • Garcia-Olmedo F, Delibes A, Sanchez-Monge R (1984) Transfer of resistance to eyespot disease from Aegilops ventricosa to wheat. Breeding for disease resistance and oat breeding—Proceedings of the Eucarpia cereal section meeting, 28 Feb–1 Mar 1984, Weihenstephan, pp 156–168

  • Gill BS, Sharma C, Raupp WJ, Browder LE, Heachett JH, Harvey TL, Moseman JG, Waines JG (1985) Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, Hessian fly, and greenbug. Plant Dis 69:314–316

    Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Google Scholar 

  • Huguet-Robert V, Dedryver F, Röder VM, Korzun S, Abélard P, Tanguy AM, Jaudeau B, Jahier J (2001) Isolation of chromosomally engineered durum wheat line carrying the Aegilops ventricosa Pch1 gene for resistance to eyespot. Genome 44:345–349

    Article  PubMed  CAS  Google Scholar 

  • Iqbal N, Reader SM, Caligari PDS, Miller TE (2000) Characterization of Aegilops uniaristata chromosomes by comparative DNA marker analysis and repetitive DNA sequence in situ hybridization. Theor Appl Genet 101:1173–1179

    Article  CAS  Google Scholar 

  • Jahier J, Tanguy AM, Abelard P, Rivoal R (1996) Utilization of deletions to localize a gene for resistance to the cereal cyst nematode, Heterodera aveneae, on an Aegilops ventricosa chromosome. Plant Breed 115:282–284

    Article  Google Scholar 

  • Jahier J, Abelard P, Tanguy AM, Dedryver F, Rivoal R, Khatkar S, Bariana HS (2001) The Aegilops ventricosa segment on chromosome 2AS of the wheat cultivar ‘VPM1’ carries the cereal cyst nematode resistance gene Cre5. Plant Breed 120:125–128

    Article  CAS  Google Scholar 

  • Kawahara T, Taketa S (2000) Fixation of translocation 2A–4B infers the monophyletic origin of Ethiopian tetraploid wheat. Theor Appl Genet 101:705–710

    Article  Google Scholar 

  • Kimber G, Feldman M (1987) Wild wheat, an Introduction. College of Agriculture University of Missouri, Columbia

    Google Scholar 

  • Kimber G, Zhao YH (1983) The D genome of the Triticeae. Can J Genet Cytol 25:581–589

    Google Scholar 

  • Maia N (1967) Obtention des blés tendres resistants au pietinverse par croisements interspecifiques blés x Aegilops. CR Acad Agric Fr 53:149–154

    Google Scholar 

  • McIntosh RA, Hart GE, Devos KM, Gale MD, Rogers WJ (1998) Catalogue of gene symbols for wheat. In: Slinkard AE (ed) Proceedings of the 9th international wheat genetics symposium, 2–7 August 1998. Printcrafters Inc., Saskatoon, pp 1–235

  • McIntyre CL, Pereira S, Moran LB, Appels R (1990) New Secale cereale (rye) derivatives for the detection of rye chromosome segments in wheat. Genome 33:635–640

    PubMed  CAS  Google Scholar 

  • Rayburn AL, Gill BS (1986) Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep 4:104–109

    Article  Google Scholar 

  • Salina EA, Lim YK, Badaeva ED, Scherban AB, Adonina IG, Amosova AA, Samatadze TE, Vatolina TY, Zoshchuk SA, Leitch AR (2006) Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome 49:1023–1035

    Article  PubMed  CAS  Google Scholar 

  • Salinas J, Pérez de la Vega M, Benito C (1981) The chromosomal location of phosphatase isozymes of the wheat endosperm. Cell Mol Life Sci 37:557–559

    Article  CAS  Google Scholar 

  • Schneider A, Linc G, Molnar-Lang M (2003) Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat. Plant Breed 122:396–400

    Article  CAS  Google Scholar 

  • Schneider A, Molnár I, Molnár-Láng M (2008) Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica. doi:10.1007/s10681-007-9624-y

  • Seah S, Spielmeyer W, Jahier J, Sivasithamparam K, Lagudah ES (2000) Resistance gene analogs within an introgressed chromosomal segment derived from Triticum ventricosum that confers resistance to nematode and rust pathogens in wheat. Mol Plant Microbe Interact 13:334–341

    Article  PubMed  CAS  Google Scholar 

  • Tanguy A-M, Coriton O, Abélard P, Dedryver F, Jahier J (2005) Structure of Aegilops ventricosa chromosome 6Nv, the donor of wheat genes Yr17, Lr37, Sr38, and Cre5. Genome 48:541–546

    Article  PubMed  CAS  Google Scholar 

  • van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. et Spach) Eig (Poaceae). Wageningen Agricultural University, Wageningen and ICARDA, Aleppo

Download references

Acknowledgments

The authors would like to thank Dr J. Jahier (INRA-Rennes, France) for kindly providing the material for investigation. This work was supported by a grant from the Russian State Foundation for Basic Research (project # 08-04-00302) and an INRA-MRI grant for Franco-Russian cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Badaeva.

Additional information

Communicated by M. Kearsey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badaeva, E.D., Dedkova, O.S., Koenig, J. et al. Analysis of introgression of Aegilops ventricosa Tausch. genetic material in a common wheat background using C-banding. Theor Appl Genet 117, 803–811 (2008). https://doi.org/10.1007/s00122-008-0821-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0821-4

Keywords

Navigation