Skip to main content
Log in

Bayesian association mapping of multiple quantitative trait loci and its application to the analysis of genetic variation among Oryza sativa L. germplasms

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

One way to use a crop germplasm collection directly to map QTLs without using line-crossing experiments is the whole genome association mapping. A major problem with association mapping is the presence of population structure, which can lead to both false positives and failure to detect genuine associations (i.e., false negatives). Particularly in highly selfing species such as Asian cultivated rice, high levels of population structure are expected and therefore the efficiency of association mapping remains almost unknown. Here, we propose an approach that combines a Bayesian method for mapping multiple QTLs with a regression method that directly incorporates estimates of population structure. That is, the effects due to both multiple QTLs and population structure were included in our statistical model. We evaluated the efficiency of our approach in simulated- and real-trait analyses of a rice germplasm collection. Simulation analyses based on real marker data showed that our model could suppress both false-positive and false-negative rates and the error of estimation of genetic effects over single QTL models, indicating that our model has statistically desirable attributes over single QTL models. As real traits, we analyzed the size and shape of milled rice grains and found significant markers that may be linked to QTLs reported previously. Association mapping should have good prospects in highly selfing species such as rice if proper methods are adopted. Our approach will be useful for the whole genome association mapping of various selfing crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard JH (2004) QTL mapping of grain quality traits from the interspecific cross Oryza sativa  × O. glaberrima. Theor Appl Genet 109:630–639

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824

    Google Scholar 

  • Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC, Rimmler JB, Lacke PA, Conneally PM, Schmader KE, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7:180–183

    Article  PubMed  CAS  Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Xhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Ann Rev Plant Biol 54:357–374

    Article  CAS  Google Scholar 

  • George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Am Stat Assoc 88:881–889

    Article  Google Scholar 

  • Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494

    PubMed  CAS  Google Scholar 

  • Hayashi T, Awata T (2005) Bayesian mapping of QTL in outbred F2 families allowing inference about whether F0 grandparents are homozygous or heterozygous at QTL. Heredity 94:326–337

    Article  PubMed  CAS  Google Scholar 

  • Heath SC (1997) Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet 61:748–760

    PubMed  CAS  Google Scholar 

  • Huang N, Parco A, Mew T, Magpantay G, McCouch S, Guiderdoni E, Xu JC, Subudhi P, Angeles ER, Khush GS (1997) RFLP mapping of isozymes, RAPD, and QTLs for grain shape, brown planthopper resistance in a doubled-haploid rice population. Mol Breed 3:105–113

    Article  CAS  Google Scholar 

  • Kerem B, Rommens J, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M and Tsui L-C (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Kilpikari R, Sillanpää MJ (2003) Bayesian analysis of multilocus association in quantitative and qualitative traits. Genet Epidemiol 25:122–135

    Article  PubMed  Google Scholar 

  • Knowler WC, Williams RC, Pettitt DJ, Steinberg AG (1988) Gm 3:5,13,14 and Type 2 diabetes mellitus: an association in American Indians with genetic admixture. Am J Hum Genet 43:520–526

    PubMed  CAS  Google Scholar 

  • Kojima Y, Ebana K, Fukuoka S, Nagamine T, Kawase M (2005) Development of an RFLP-based rice diversity research set of germplasm. Breed Sci 55:431–440

    Article  CAS  Google Scholar 

  • Kraakman ATW, Niks RE, van den Berg PMMM, Stam P, van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Takano-Kai N, Yoshimura A (2001) RFLP mapping of genes for long kernel and awn on chromosome 3 in rice. Rice Genet Newslett 18:26–28

    CAS  Google Scholar 

  • Kuo L, Mallick B (1998) Variable selection for regression models. Sankhya Ser B 60:65–81

    Google Scholar 

  • Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin SY, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang ZX, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y (1994) A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet 8:365–372

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265:2037–2048

    Article  PubMed  CAS  Google Scholar 

  • Li J, Xiao J, Grandillo S, Jiang L, Wan Y, Deng Q, Yuan L, McCouch SR (2004) QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome 47:697–704

    Article  PubMed  CAS  Google Scholar 

  • Parisseaux B, Bernardo R (2004) In silico mapping of quantitative trait loci in maize. Theor Appl Genet 109:508–514

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000a) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000b) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  CAS  Google Scholar 

  • Redona ED, Mackill DJ (1998) Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet 96:957–963

    Article  CAS  Google Scholar 

  • Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–186

    Article  Google Scholar 

  • Satagopan JM, Yandell BS, Newton MA, Osborn TC (1996) A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics 144:805–816

    PubMed  CAS  Google Scholar 

  • Sillanpää MJ, Arjas E (1998) Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics 148:1373–1388

    PubMed  Google Scholar 

  • Sillanpää MJ, Arjas E (1999) Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics 151:1605–1619

    PubMed  Google Scholar 

  • Sillanpää MJ, Bhattacharjee M (2005) Bayesian association-based fine mapping in small chromosomal segments. Genetics 169:427–439

    Article  PubMed  CAS  Google Scholar 

  • Sorensen D, Gianola D (2002) Likelihood, Bayesian, and MCMC methods in quantitative genetics. Springer, Heidelberg

    Google Scholar 

  • Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang Q (2000) Genetic bases of appearance quality of rice grain characteristics. Theor Appl Genet 96:957–963

    Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation with flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Uimari P, Hoeschele I (1997) Mapping linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms. Genetics 146:735–743

    PubMed  CAS  Google Scholar 

  • Uimari P, Sillanpää MJ (2001) Bayesian oligogenic analysis of quantitative and qualitative traits in general pedigrees. Genet Epidemiol 21:224–242

    Article  PubMed  CAS  Google Scholar 

  • Wan XY, Wan JM, Weng JF, Jiang L, Bi JC, Wang CM, Zhai HQ (2005) Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet 110:1334–1346

    Article  PubMed  CAS  Google Scholar 

  • Wan XY, Wan JM, Jiang L, Wang JK, Zhai HQ, Weng JF, Wang HL, Lei CL, Wang JL, Zhang X, Cheng ZJ, Guo XP (2006) QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet 112:1258–1270

    Article  PubMed  CAS  Google Scholar 

  • Yi N (2004) A unified Markov chain Monte Carlo framework for mapping multiple quantitative trait loci. Genetics 167:967–975

    Article  PubMed  CAS  Google Scholar 

  • Yi N, George V, Allison DB (2003) Stochastic search variable selection for identifying multiple quantitative trait loci. Genetics 164:1129–1138

    PubMed  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs W, Bi, IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–207

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y-M, Mao Y, Xie C, Smith H, Luo L, Xu S (2005a) Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.). Genetics 169:2267–2275

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Xu Y, Akash M, McCouch S, Oard JH (2005b) Identification of candidate markers associated with agronomic traits in rice using discriminant analysis. Theor Appl Genet 110:721–729

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Jean-Luc Jannink and the two anonymous reviewers for their valuable comments and suggestions. We thank Akifumi Imada for assistance in digital photography. This work was supported by a grant from the Green Technology Project (QT1001) of the Ministry of Agriculture, Forestry and Fisheries of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyoshi Iwata.

Additional information

Communicated by J.-L. Jannink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwata, H., Uga, Y., Yoshioka, Y. et al. Bayesian association mapping of multiple quantitative trait loci and its application to the analysis of genetic variation among Oryza sativa L. germplasms. Theor Appl Genet 114, 1437–1449 (2007). https://doi.org/10.1007/s00122-007-0529-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0529-x

Keywords

Navigation