Skip to main content
Log in

BARCSoySNP23: a panel of 23 selected SNPs for soybean cultivar identification

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

This report describes a set of 23 informative SNPs (BARCSoySNP23) distributed on 19 of the 20 soybean linkage groups that can be used for soybean cultivar identification. Selection of the SNPs to include in this set was made based upon the information provided by each SNP for distinguishing a diverse set of soybean genotypes as well as the linkage map position of each SNP. The genotypes included the ancestors of North American cultivars, modern North American cultivars and a group of Korean cultivars. The procedure used to identify this subset of highly informative SNP markers resulted in a significant increase in the power of identification versus any other randomly selected set of equal number. This conclusion was supported by a simulation which indicated that the 23-SNP panel can uniquely distinguish 2,200 soybean cultivars, whereas sets of randomly selected 23-SNP panels allowed the unique identification of only about 50 cultivars. The 23-SNP panel can efficiently distinguish each of the genotypes within four maturity group sets of additional cultivars/lines that have identical classical pigmentation and morphological traits. Comparatively, the 13 trinucleotide SSR set published earlier (BARCSoySSR13) has more power on a per locus basis because of the multi-allelic nature of SSRs. However, the assay of bi-allelic SNP loci can be multi-plexed using non-gel based techniques allowing for rapid determination of the SNP alleles present in soybean genotypes, thereby compensating for their relatively low information content. Both BARCSoySNP23 and BARCSoySSR13 were highly congruent relative to identifying genotypes and for estimating population genetic differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alifrangis M, Enosse S, Pearce R, Drakeley C, Roper C, Khalil IF, Nkya WM, Ronn AM, Theander TG, Bygbjerg IC (2005) A simple, high-throughput method to detect Plasmodium falciparum single nucleotide polymorphisms in the dihydrofolate reductase, dihydropteroate synthase, and P. falciparum chloroquine resistance transporter genes using polymerase chain reaction- and enzyme-linked immunosorbent assay-based technology. Am J Trop Med Hyg 72:155–162

    PubMed  CAS  Google Scholar 

  • Aranzana MJ, Carbo J, Arus P (2003) Microsatellite variability in peach [Prunus persica (L.) Batsch]: cultivar identification, marker mutation, pedigree inferences and population structure. Theor Appl Genet 106:1341–1352

    PubMed  CAS  Google Scholar 

  • Awadalla P, Eyre-Walker A, Smith JM (1999) Linkage disequilibrium and recombination in hominid mitochondrial DNA. Science 286:2524–2525

    Article  PubMed  CAS  Google Scholar 

  • Balamurugan K, Prabakaran N, Duncan G, Budowle B, Tahir M, Tracey M (2001) Allele frequencies of 13 STR loci and the D1S80 locus in a Tamil population from Madras, India. J Forensic Sci 46:1515–1517

    PubMed  CAS  Google Scholar 

  • Bashiardes E, Manoli P, Budowle B, Cariolou MA (2001) Data on nine STR loci used for forensic and paternity testing in the Greek Cypriot population of Cyprus. Forensic Sci Int 123:225–226

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62:1408–1415

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty R, Meagher TR, Smouse PE (1988) Parentage analysis with genetic markers in natural populations. I. The expected proportion of offspring with unambiguous paternity. Genet. 118:527–536

    CAS  Google Scholar 

  • Chen J, Iannone MA, Li MS, Taylor JD, Rivers P, Nelson AJ, Slentz-Kesler KA, Roses A, Weiner MP (2000) A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension. Genome Res 10:549–557

    Article  PubMed  CAS  Google Scholar 

  • Diwan N, Cregan PB (1997) Automated sizing of fluorescent labelled simple sequence repeat markers to assay genetic variation in soybean. Theor Appl Genet 95:723–733

    Article  CAS  Google Scholar 

  • Esselink GD, Smulders MJ, Vosman B (2003) Identification of cut rose (Rosa hybrida) and rootstock varieties using robust sequence tagged microsatellite site markers. Theor Appl Genet 106:277–286

    PubMed  CAS  Google Scholar 

  • Faruqi AF, Hosono S, Driscoll MD, Dean FB, Alsmadi O, Bandaru R, Kumar G, Grimwade B, Zong Q, Sun Z, Du Y, Kingsmore S, Knott T, Lasken RS (2001) High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification. BMC Genomics 2:4

    Article  PubMed  CAS  Google Scholar 

  • Gangitano DA, Garofalo MG, Juvenal GJ, Budowle B, Lorente JA, Padula RA (2002) STR data for the PowerPlex 16 loci in Buenos Aires population (Argentina). J Forensic Sci 47:418–420

    PubMed  CAS  Google Scholar 

  • Gizlice Z, Carter TE, Burton JW (1994) Genetic base for North American public soybean cultivars released between 1947 and 1988. Crop Sci 34:1143 1151

    Article  Google Scholar 

  • Glowatzki-Mullis ML, Gaillard C, Wigger G, Fries R (1995) Microsatellite-based parentage control in cattle. Anim Genet 26:7–12

    Article  PubMed  CAS  Google Scholar 

  • Heaton MP, Harhay GP, Bennett GL, Stone RT, Grosse WM, Casas E, Keele JW, Smith TP, Chitko-McKown CG, Laegreid WW (2002) Selection and use of SNP markers for animal identification and paternity analysis in US beef cattle. Mamm Genome 13:272–281

    Article  PubMed  CAS  Google Scholar 

  • Heyen DW, Beever JE, Da Y, Evert RE, Green C, Bates SR, Ziegle JS, Lewin HA (1997) Exclusion probabilities of 22 bovine microsatellite markers in fluorescent multiplexes for semiautomated parentage testing. Anim Genet 28:21–27

    Article  PubMed  CAS  Google Scholar 

  • Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 33:54–78

    Google Scholar 

  • Hochberg EP, Miklos DB, Neuberg D, Eichner DA, McLaughlin SF, Mattes-Ritz A, Alyea EP, Antin JH, Soiffer RJ, Ritz J (2003) A novel rapid single nucleotide polymorphism (SNP)-based method for assessment of hematopoietic chimerism after allogeneic stem cell transplantation. Blood 101:363–369

    Article  PubMed  CAS  Google Scholar 

  • Hou P, Ji M, Li S, Lu Z (2004) Microarray-based approach for high-throughput genotyping of single-nucleotide polymorphisms with layer-by-layer dual-color fluorescence hybridization. Clin Chem 50:1955–1957

    Article  PubMed  Google Scholar 

  • Keim P, Olson T, Shoemaker R (1988) A rapid protocol for isolating soybean DNA. Soybean Genet Newslett 15:150–152

    Google Scholar 

  • Kondrashov AS (2003) Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum Mutat 21:12–27

    Article  PubMed  CAS  Google Scholar 

  • Krawczak M (1999) Informativity assessment for biallelic single nucleotide polymorphisms. Electrophoresis 20:1676–1681

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Walker DR, Cregan PB, Boerma HR (2004) Comparison of four flow cytometric SNP detection assays and their use in plant improvement. Theor Appl Genet 110:167–174

    Article  PubMed  CAS  Google Scholar 

  • Lee HY, Park MJ, Yoo JE, Chung U, Han GR, Shin KJ (2005) Selection of twenty-four highly informative SNP markers for human identification and paternity analysis in Koreans. Forensic Sci Int 148:107–112

    Article  PubMed  CAS  Google Scholar 

  • Luikart G, Biju-Duval MP, Ertugrul O, Zagdsuren Y, Maudet C, Taberlet P (1999) Power of 22 microsatellite markers in fluorescent multiplexes for parentage testing in goats (Capra hircus). Anim Genet 30:431–438

    Article  PubMed  CAS  Google Scholar 

  • Mantel N (1967) The detecting of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Melendez E, Martinez-Espin E, Karlson IS, Lorente JA, Budowle B (2004) Population data on 15 STR loci (PowerPlex 16 kit) in a Costa Rica (Central America) sample population. J Forensic Sci 49:170–172

    Article  PubMed  Google Scholar 

  • Nachman MW, Crowell SL (2000) Estimate of the mutation rate per nucleotide in humans. Genetics 156:297–304

    PubMed  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Oganisian AS, Kochieva EZ, Ryskov AP (1996) [Fingerprinting of potato species and cultivar using RAPD-PCR]. Genetika 32:448–451

    PubMed  CAS  Google Scholar 

  • Olivier M, Chuang LM, Chang MS, Chen YT, Pei D, Ranade K, de Witte A, Allen J, Tran N, Curb D, Pratt R, Neefs H, de Arruda Indig M, Law S, Neri B, Wang L, Cox DR (2002) High-throughput genotyping of single nucleotide polymorphisms using new biplex invader technology. Nucleic Acids Res 30:e53

    Article  PubMed  Google Scholar 

  • Petkovski E, Keyser-Tracqui C, Hienne R, Ludes B (2005) SNPs and MALDI-TOF MS: tools for DNA typing in forensic paternity testing and anthropology. J Forensic Sci 50:535–541

    Article  PubMed  CAS  Google Scholar 

  • Ranade K, Chang MS, Ting CT, Pei D, Hsiao CF, Olivier M, Pesich R, Hebert J, Chen YD, Dzau VJ, Curb D, Olshen R, Risch N, Cox DR, Botstein D (2001) High-throughput genotyping with single nucleotide polymorphisms. Genome Res 11:1262–1268

    PubMed  CAS  Google Scholar 

  • SAS Institute (1999) SAS/STAT User’s Guide. Version 8. SAS Institute, Inc., Cary, NC

  • Schueler S, Tusch A, Schuster M, Ziegenhagen B (2003) Characterization of microsatellites in wild and sweet cherry (Prunus avium L.) markers for individual identification and reproductive processes. Genome 46:95–102

    Article  PubMed  CAS  Google Scholar 

  • Shirasawa K, Shiokai S, Yamaguchi M, Kishitani S, Nishio T (2006) Dot-blot-SNP analysis for practical plant breeding and cultivar identification in rice. Theor Appl Genet 113:147–155

    Article  PubMed  CAS  Google Scholar 

  • Singh D, Ahuja PS (2006) 5S rDNA gene diversity in tea (Camellia sinensis (L.) O. Kuntze) and its use for variety identification. Genome 49:91–96

    Article  PubMed  CAS  Google Scholar 

  • Sobotka R, Dolanska L, Curn V, Ovesna J (2004) Fluorescence-based AFLPs occur as the most suitable marker system for oilseed rape cultivar identification. J Appl Genet 45:161–173

    PubMed  Google Scholar 

  • Song QJ, Quigley CV, Carter TE, Nelson RL, Boerma HR, Strachan J, Cregan PB (1999) A selected set of trinucleotide simple sequence repeat markers for soybean cultivar identification. Plant Varieties and Seeds 12:207–220

    Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    Article  PubMed  CAS  Google Scholar 

  • Syn CK, Chuah SY, Ang HC, Lim SE, Tan-Siew WF, Chow ST, Budowle B (2005) Genetic data for the 13 CODIS STR loci in Singapore Chinese. Forensic Sci Int 152:285–288

    Article  PubMed  CAS  Google Scholar 

  • Usha AP, Simpson SP, Williams JL (1995) Probability of random sire exclusion using microsatellite markers for parentage verification. Anim Genet 26:155–161

    Article  PubMed  CAS  Google Scholar 

  • Weir BS (1990) Genetic data analysis methods for discrete genetic data. Sinauer Association, Sunderland

  • Werner FA, Durstewitz G, Habermann FA, Thaller G, Kramer W, Kollers S, Buitkamp J, Georges M, Brem G, Mosner J, Fries R (2004) Detection and characterization of SNPs useful for identity control and parentage testing in major European dairy breeds. Anim Genet 35:44–49

    Article  PubMed  CAS  Google Scholar 

  • Williams JL, Usha AP, Urquhart BG, Kilroy M (1997) Verification of the identity of bovine semen using DNA microsatellite markers. Vet Rec 140:446–449

    PubMed  CAS  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their thanks for the excellent technical assistance of Charles Quigley and Mike Livingston. This work was supported in part by a grant from the United Soybean Board whose support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Cregan.

Additional information

Communicated by M. Bohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, M.S., Song, Q.J., Choi, I.Y. et al. BARCSoySNP23: a panel of 23 selected SNPs for soybean cultivar identification. Theor Appl Genet 114, 885–899 (2007). https://doi.org/10.1007/s00122-006-0487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0487-8

Keywords

Navigation