Skip to main content
Log in

QTLs controlling the production of transgenic and adventitious roots in Brassica oleracea following treatment with Agrobacterium rhizogenes

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Brassica oleracea can be genetically engineered using Agrobacterium rhizogenes. The initial stage of this process is the production of transgenic (‘hairy’) roots; shoots are subsequently regenerated from these roots. Previous work using gus and gfp reporter genes has shown that genotypes of B. oleracea vary in their performance for transgenic root production. Quantitative trait loci (QTLs) controlling this trait have been located in one mapping population. The current study provides evidence that performance for transgenic root production is associated with performance for adventitious (non-transgenic) root production in B. oleracea across a second mapping population. This is shown by regression analyses between performance for the two traits and the demonstration that QTLs controlling the two traits map to the same positions within the genome. Since the rate of adventitious root production does not differ significantly in the presence and absence of A. rhizogenes, there is no evidence that the expression of Agrobacterium genes induces adventitious root production. It is apparent that genotypes exhibiting high adventitious root production in the absence of A. rhizogenes will also tend to show high transgenic root production, thereby allowing the selection of lines that are more efficiently transformed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ballas N, Citovsky V (1997) Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 94:10723–10728

    Article  CAS  PubMed  Google Scholar 

  • Barg R, Pilowsky M, Shabtai S, Carmi N, Szechtman AD, Dedicova B, Salts Y (1997) The TYLCV-tolerant tomato line MP-1 is characterized by superior transformation competence. J Exp Bot 48:1919–1923

    Article  CAS  Google Scholar 

  • Chateau S, Sangwan RS, Sangwan-Norreel BS (2000) Competence of Arabidopsis thaliana genotypes and mutants for Agrobacterium tumefaciens-mediated gene transfer: role of phytohormones. J Exp Bot 51:1961–1968

    Article  CAS  PubMed  Google Scholar 

  • Cogan N, Harvey E, Robinson H, Lynn J, Pink D, Newbury HJ, Puddephat I (2001) The effects of anther culture and plant genetic background on Agrobacterium rhizogenes-mediated transformation of commercial cultivars and derived doubled haploid Brassica oleracea. Plant Cell Rep 20:755–762

    Article  CAS  Google Scholar 

  • Cogan NOI, Lynn JR, King GJ, Kearsey MJ, Newbury HJ, Puddephat IJ (2002) Identification of genetic factors controlling the efficiency of Agrobacterium rhizogenes-mediated transformation of Brassica oleracea by QTL analysis. Theor Appl Genet 105:568–576

    Google Scholar 

  • Cogan NOI, Newbury HJ, Oldacres AM, Lynn JR, King GJ, Kearsey MJ, Puddephat IJ (2004) Identification and characterisation of QTL controlling Agrobacterium-mediated transient and stable transformation of Brassica oleracea. Plant Biotechnol 2:59–69

    Article  CAS  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    PubMed  Google Scholar 

  • Deng W, Chen LS, Wood DW, Metcalfe T, Liang XY, Gordon MP, Comai L, Nester EW (1998) Agrobacterium VirD2 protein interacts with plant host cyclophilins. Proc Natl Acad Sci USA 95:7040–7045

    Article  CAS  PubMed  Google Scholar 

  • Falasca G, Reverberi M, Lauri P, Caboni E, De Stradis A, Altamura NM (2000) How Agrobacterium rhizogenes triggers de novo root formation in a recalcitrant woody plant: an integrated histological, ultrastructural and molecular analysis. New Phytol 145:77–93

    Article  CAS  Google Scholar 

  • Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 51:223–256

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB (2003) Improving plant genetic engineering by manipulating the host. Trends Biotechnol 21:95–98

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB, Liu CN (1994) Genetic manipulation of Agrobacterium tumefaciens strains to improve transformation of recalcitrant plant species. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer, Dordrecht, B4, p 1013

    Google Scholar 

  • Guerche P, Jouanin L, Tepfer D, Pelletier G (1987) Genetic transformation of oilseed rape (Brassica napus) by the Ri T-DNA of Agrobacterium rhizogenes and analysis of the inheritance of the transformed phenotype. Mol Gen Genet 206:382–386

    Article  CAS  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    Article  CAS  PubMed  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    CAS  PubMed  Google Scholar 

  • Kearsey MJ, Hyne V (1994) QTL analysis—a simple marker regression approach. Theor Appl Genet 89:698–702

    Google Scholar 

  • Kearsey MJ, Pooni HS (1998) The genetic analysis of quantitative traits. Chapman and Hall, London

    Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  Google Scholar 

  • McCullaugh P, Nelder JA (1987) Generalized linear models. Chapman and Hall, London

    Google Scholar 

  • Morris RO, Blevins DG, Dietrich JT, Durley RC, Gelvin SB, Gray J, Hommes NG, Kaminek M, Mathews LJ, Meilan R, Reinbott TM, Sayavedrasoto L (1993) Cytokinins in plant pathogenic bacteria and developing cereal grains. Aust J Plant Physiol 20:621–637

    CAS  Google Scholar 

  • Murashige T, Skoog FS (1962) A revised method for rapid growth and bioassays and tobacco tissue culture. Physiol Plant 15:437–497

    Google Scholar 

  • Mysore KS, Nam J, Gelvin SB (2000) An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci USA 97:948–953

    Article  CAS  PubMed  Google Scholar 

  • Nam J, Mattysse AG, Gelvin SB (1997) Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9:317–333

    Article  CAS  PubMed  Google Scholar 

  • Nam J, Mysore KS, Zheng C, Knue MK, Mattysse AG, Gelvin SB (1999) Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol Gen Genet 261:429–438

    Article  CAS  PubMed  Google Scholar 

  • Poulsen GB (1996) Genetic transformation of Brassica. Plant Breed 115:209–225

    CAS  Google Scholar 

  • Puddephat IJ (2003) Plant genetic engineering. In: Newbury HJ (ed) Plant molecular breeding. Blackwell, Oxford, pp 82–133

    Google Scholar 

  • Puddephat IJ, Riggs TJ, Fenning TM (1996) Transformation of Brassica oleracea L: a critical review. Mol Breed 2:185–210

    Article  Google Scholar 

  • Puddephat IJ, Robinson HT, Fenning TM, Barbara DJ, Morton A, Pink DAC (2001) Recovery of phenotypically normal transgenic plants of Brassica oleracea upon Agrobacterium rhizogenes-mediated co-transformation and selection of transformed hairy roots by GUS assay. Mol Breed 7:229–242

    Article  CAS  Google Scholar 

  • Rae A, Howell E, Kearsey MJ (1999) More QTL for flowering time revealed by substitution lines in Brassica oleracea. Heredity 83:586–596

    Article  PubMed  Google Scholar 

  • Ramsey LD, Jennings DE, Bohoun EJR, Arthur AE, Lydiate DJ, Kearsey MJ, Marshall DF (1996) The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precise mapping of quantitative trait loci. Genome 39:558–567

    Google Scholar 

  • Sangwan RSY, Bourgeois Y, Sangwannorreel BS (1991) Genetic transformation of Arabidopsis thaliana zygotic embryos and identification of critical parameters influencing transformation efficiency. Mol Gen Genet 230:475–485

    Article  CAS  PubMed  Google Scholar 

  • Sebastian RL, Howell EC, King GJ, Marshall DF, Kearsey MJ (2000) An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations. Theor Appl Genet 100:75–81

    Google Scholar 

  • Spano L, Pomponi M, Constantino P, van Slogteren GMS, Tempe J (1982) Identification of T-DNA in the root-inducing plasmid of the agropine type Agrobacterium rhizogenes 1855. Plant Mol Biol 1:291–300

    Article  CAS  Google Scholar 

  • Sparrow PAC, Townsend TM, Arthur AE, Dale PJ, Irwin JA (2004a) Genetic analysis of Agrobacterium tumefaciens susceptibility in Brassica oleracea. Theor Appl Genet 108:644–650

    Google Scholar 

  • Sparrow PAC, Townsend TM, Morgan CL, Dale PJ, Arthur AE, Irwin JA (2004b) Genetic analysis of in vitro shoot regeneration from cotyledonary petioles of Brassica oleracea. Theor Appl Genet 108:1249–1255

    Google Scholar 

  • Sparrow PAC, Dale PJ, Irwin JA (2004c) The use of phenotypic markers to identify Brassica oleracea genotypes for routine high-throughput Agrobacterium-mediated transformation. Plant Cell Rep 23:64–70

    Article  CAS  PubMed  Google Scholar 

  • Swart S, Lugtenberg BJJ, Smit G, Kijne JW (1994) Purification and partial characterisation of a glycoprotein from pea (Pisum sativum) with receptor activity for rhicadhesin, an attachment protein of the Rhizobiaceae. Plant Mol Biol 24:171–183

    Google Scholar 

  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79:140–146

    Article  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2000) From host recognition to T-DNA integration: the function of bacterial and plant genes in the Agrobacterium-plant cell interaction. Mol Plant Pathol 1:201–212

    Article  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2002) Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 12:121–129

    Article  CAS  PubMed  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2001) VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20:3596–3607

    Article  CAS  Google Scholar 

  • Wagner VT, Mattysse AG (1992) Involvement of vitronectin-like protein in attachment of Agrobacterium tumefaciens to carrot suspension cells. J Bacteriol 174:5999–6003

    CAS  PubMed  Google Scholar 

  • Walkerpeach CR, Velten J (1994) Agrobacterium-mediated gene transfer to plant cells; cointegrate and binary vector systems. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer, Dordrecht, B4, pp 1–9

    Google Scholar 

  • Wordragen MF van, Ouwerkerk PBF, Dons HJM (1992) Agrobacterium rhizogenes-mediated induction of apparently untransformed roots and callus in chrysanthemum. Plant Cell Tissue Organ Cult 30:149–157

    Article  Google Scholar 

  • Yibrah HS, Gronroos R, Lindroth A, Franzen H, Clapham D, von Arnold S (1996) Agrobacterium rhizogenes mediated induction of adventitious rooting from Pinus contorta hypocotyls and the effect of 5-azacytidine on transgene activity. Transgenic Res 5:75–85

    CAS  Google Scholar 

  • Zhang J, Boone L, Kocz R, Zhang C, Binns A, Lynn DG (2000) At the maize/Agrobacterium interface: natural factors limiting host transformation. Chem Biol 7:611–621

    Article  CAS  PubMed  Google Scholar 

  • Ziemienowicz A, Tinland B, Bryant J, Gloeckler V, Hohn B (2000) Plant enzymes but not Agrobacterium VirD2 mediate T-DNA ligation in vitro. Mol Cell Biol 20:6317–6322

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Newbury.

Additional information

Communicated by G. Wenzel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oldacres, A.M., Newbury, H.J. & Puddephat, I.J. QTLs controlling the production of transgenic and adventitious roots in Brassica oleracea following treatment with Agrobacterium rhizogenes. Theor Appl Genet 111, 479–488 (2005). https://doi.org/10.1007/s00122-005-2037-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-2037-1

Keywords

Navigation