Skip to main content

Advertisement

Log in

Genetic relationships of tetraploid Elymus species and their genomic donor species inferred from polymerase chain reaction-restriction length polymorphism analysis of chloroplast gene regions

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The genetic relationships of 38 individuals from 13 Elymus tetraploid species, two Pseudoroegneria species and one Hordeum species were examined using polymerase chain reaction-restriction length polymorphism analysis of chloroplast gene regions. The 13 Elymus species contain SH and SY genomes with either a single spikelet or multiple spikelets per rachis node. The Pseudoroegneria and Hordeum species contain an S genome with single spikelet per rachis node and an H genome with multiple spikelets per rachis node, respectively. Four chloroplast gene regions, trnD-trnT intron, trnK [tRNA-Lys (UUU) exon1]–trnK [tRNA-Lys (UUU) exon2], trnC-trnD, and rbcL were amplified with specific primers and subsequently digested with up to 16 different restriction enzymes. Interspecific variation was detected in the four regions. A dendrogram based on similarity matrices using the unweighted pair group method with arithmetic average algorithm separated the 38 individuals into two distinct groups: the Elymus and Pseudoroegneria species as one group and Horduem as a second group. This result corresponded well with previous findings, and strongly suggested that a Pseudoroegneria species is the maternal donor to tetraploid Elymus species. Unlike previous studies using nuclear genes, the chloroplast DNA used in this study could not clearly separate the SY-genome species from SH-genome species. No clear separation between the species with a single spikelet per rachis node and the species with multiple spikelets per rachis node was found. Intra-specific variation was detected for the species studied. These observations provide molecular evidence for the highly diverse nature of the Elymus gene pool based on morphological characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baum BR (1983) A phylogenetic analysis of the tribe Triticeae (Poaceae) based on morphological characters of the genera. Can J Bot 61:518–535

    Google Scholar 

  • Bothmer R von, Flink J, Lanström T (1986) Meiosis in interspecific Hordeum hybrids. I. Diploid combinations. Can J Genet Cytol 28:525–535

    Google Scholar 

  • Dewey DR (1980) Cytogenetics of Agropyron ugamicum and six of its interspecific hybrids. Bot Gaz 141:305–312

    Article  Google Scholar 

  • Dewey DR (1984) The genomic system of classification. A guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in Plant Improvement. 16th Stadler Genetics Symposium. Plenum, New York, pp 209–280

  • Grant V (1981) Plant speciation. Columbia University Press, New York

  • Hauser LA, Crovello TJ (1982) Numerical analysis of genetic relationships in Thelypodieae (Brassicaceae). Syst Bot 7:249–268

    Google Scholar 

  • Hitchcock AS (1951) Tribe 3. Hordeae. In: Manual of the Grasses of the United States. U.S. Government Printing Office, Washington, DC, pp 230–280

  • Hsiao C, Chatterton NJ, Asay KH, Jensen KB (1995) Phylogenetic relationships of the monogenomic species of the wheat tribe Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome 38:211–223

    CAS  PubMed  Google Scholar 

  • Jaaska V (1992) Isoenzyme variation in the grass genus Elymus (Poaceae). Hereditas 117:11–22

    CAS  Google Scholar 

  • Jensen KB (1990) Cytology and taxonomy of E. grandiglumis, E. alatavicus, and E. batalinii (Poaceae: Triticeae). Genome 33:668–673

    Google Scholar 

  • Jensen KB, Salomon B (1995) Cytogenetics and morphology of Elymus panormitanus var. heterophyllus (Keng) A. Löve and its relationship to Elymus panormitanus (Poaceae: Triticeae). Int J Plant Sci 156:731–739

    Article  Google Scholar 

  • Jensen KB, Hatch SL, Wipff JK (1992) Cytology and morphology of Pseudoroegneria deweyi (Poaceae: Triticeae): a new species from the foothills of the Caucasus Mountains (Russia). Can J Bot 70:900–909

    Google Scholar 

  • Jones TA, Redinbaugh MG, Zhang Y (2000) The Western Wheatgrass chloroplast genome originates in Pseudoroegneria. Crop Sci 40:43–47

    CAS  Google Scholar 

  • Junghans H, Metzlaff M (1990) A simple and rapid method for the preparation of total plant DNA. Biotechniques 8:176

    CAS  PubMed  Google Scholar 

  • Kellogg EA, Appels R (1995) Intraspecific and interspecific variation in 5S RNA genes are decoupled in diploid wheat relatives. Genetics 140:325–343

    CAS  PubMed  Google Scholar 

  • Kellogg EA, Appels R, Mason-Gamer RJ (1996) When gene tree tell different stories: the diploid genera of the Triticeae (Gramineae). Syst Bot 21:321–347

    Google Scholar 

  • Keng YL (1959) Flora Illustralis Plantarum Primarum Sinicarum (Garmineae). Science Press, Beijing

  • Leitch B, Bennett MD (1998) Polyploidy in angiosperms. Trends Plant Sci 2:470–476

    Article  Google Scholar 

  • Löve A (1984) Conspectus of the Triticeae. Feddes Rep 95:425–521

    Google Scholar 

  • Löve A, Connor HE (1982) Relationships and taxonomy of New Zealand wheatgrasses. N Z J Bot 20:169–186

    Google Scholar 

  • Lu BR (1991) Intergeneric crosses of Psathyrostachys huashanica with Elymus spp. and cytogenetic studies of the hybrids with E. tsukushiensis (Poaceae, Triticeae). Nord J Bot 11:27–32

    Google Scholar 

  • Lu BR (1993) Biosystematic investigations of asiatic wheatgrasses—Elymus L. (Triticeae: Poaceae). Ph.D. thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden

  • Lu BR (1994) The genus Elymus L. in Asia. Taxonomy and biosystematics with special reference to genomic relationships. In: Wang RRC, Jensen KB, Jaussi C (eds) Proceedings of the 2nd International Triticeae Symposium, Logan, UT, pp 219–233

  • Lu BR, Bothmer R von (1990) Intergeneric hybridization between Hordeum and Asiatic Elymus. Hereditas 112:109–116

    Google Scholar 

  • Lu BR, Salomon B (1992) Differentiation of the SY genomes in Asiatic Elymus. Hereditas 116:121–126

    Google Scholar 

  • Mason-Gamer RJ (2001) Origin of North America Elymus (Poaceae: Triticeae) allotetraploids based of granule-bound starch synthase gene sequences. Syst Bot 26:757–758

    Google Scholar 

  • Mason-Gamer RJ, Kellogg EA (1996a) Chloroplast DNA analysis of the monogenomic Triticeae: phylogenetic implications and genome-specific markers. In: Jauhar PP (ed) Methods of genome analysis in plants. CRC Press, Boca Raton, pp 301–325

  • Mason-Gamer RJ, Kellogg EA (1996b) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst Biol 45:524–545

    Google Scholar 

  • Mason-Gamer RJ, Kellogg EA (2000) Phylogenetic analysis of the Triticeae using the starch synthase gene, and a preliminary analysis of some North American Elymus species. In: Jacobs SWL, Everett J (eds) Grasses: systematics and evolution. CSIRO Publishing, Collingwood, Victoria, Australia, pp 102–109

  • Mason-Gamer RJ, Orme NL, Anderson CM (2002) Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome 45:991–1002

    Article  CAS  PubMed  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424

    Google Scholar 

  • Melderis A, Humphries EJ, Tutin TG, Heathcote SA (1980) Tribe Triticeae Dumort. In: Tutin TG, et al (eds) Flora Europaea, vol 5. Cambridge University Press, Cambridge, pp 190–206

  • Nevski SA (1934) Hordeae Benth. In Komarov VL, Roshevits RY, Shishkin BK (eds) Flora URSS II. Leningrad, pp 590–728

  • Petersen G, Seberg O (1997) Phylogenetic analysis of the Triticeae (Poaceae) based on rpoA sequence data. Mol Phylogenet Evol 7:217–230

    Article  CAS  PubMed  Google Scholar 

  • Redinbaugh MG, Jones TA, Zhang Y (2000) Ubiquity of the St chloroplast genome in St-containing Triticeae polyploids. Genome 43:846–852

    Article  CAS  PubMed  Google Scholar 

  • Rohlf FJ (1993) Numerical taxonomy and multivariate analysis system. Version 1.80. Exeter Software, Setauket, NY

  • Salomon B, Lu BR (1992) Genomic groups, morphology, and sectional delimitation in Eurasian Elymus (Poaceae, Triticeae). Plant Syst Evol 180:1–13

    Google Scholar 

  • Soltis DE, Soltis PS (1993) Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12:243–273

    CAS  Google Scholar 

  • Sun G (2002) Interspecific polymorphism at non-coding regions of chloroplast, mitochondrial DNA and rRNA IGS region in Elymus species. Hereditas 137:119–124

    PubMed  Google Scholar 

  • Sun GL, Salomon B, Bothmer R von, (1997) Analysis of tetraploid Elymus species using wheat microsatellite markers and RAPD markers. Genome 40:806–814

    CAS  Google Scholar 

  • Svitashev S, Salomon B, Bryngelsson T, Bothmer R von (1996) A study of 28 Elymus species using repetitive DNA sequences. Genome 39:1093–1101

    CAS  Google Scholar 

  • Svitashev S, Bryngelsson T, Li X, Wang RRC (1998) Genome-specific repetitive DNA and RAPD markers for genome identification in Elymus and Hordelymus. Genome 41:120–128

    Article  CAS  PubMed  Google Scholar 

  • Tzvelev NN (1976) Tribe 3. Triticeae Dumort. In:Fedorov AA (ed) Poaceae URSS. Navka, Leningrad, pp 147–181

Download references

Acknowledgements

We thank Dr. B. Salomon at The Swedish University of Agricultural Sciences and the Regional Plant Introduction Station, USDA, for kindly supplying the seeds used in this study. This research was supported with grants from NSERC, a Senate Research Grant and the Student Employment Experience Program (SEEP) at Saint Mary's University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genlou Sun.

Additional information

Communicated by H.F. Linskens

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMillan, E., Sun, G. Genetic relationships of tetraploid Elymus species and their genomic donor species inferred from polymerase chain reaction-restriction length polymorphism analysis of chloroplast gene regions. Theor Appl Genet 108, 535–542 (2004). https://doi.org/10.1007/s00122-003-1453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1453-3

Keywords

Navigation