Skip to main content
Log in

Positronenemissionstomographie bei urologischen Tumorerkrankungen

Positron-emission tomography in urooncology

  • Leitthema
  • Published:
Der Urologe Aims and scope Submit manuscript

An Erratum to this article was published on 05 September 2015

Zusammenfassung

Die Positronenemissionstomograpie (PET) wird bei urologischen Tumorentitäten seit vielen Jahren verwendet. Hierbei kommen verschiedene Tracersubstanzen zum Einsatz, die metabolische Informationen anzeigen oder auf einem direkten Nachweis molekularer Zielstrukturen beruhen. Während sie im Staging des Seminoms in Form der 18F-Fluordeoxyglukose- (18F-FDG-)PET als Standardverfahren Einzug in die Leitlinien gefunden haben, ist die PET aufgrund Ermangelung spezifischer Tracer bei Nierentumoren in der Routine bisher nicht etabliert. Trotz anfänglicher Euphorie scheint die PET mit 18F-FDG oder cholinbasierten Tracern auch beim Urothelkarzinom der Blase meist keinen relevanten diagnostischen Mehrwert zu erbringen und sollte daher hier mit Zurückhaltung bzw. nur im Rahmen von Studien Anwendung finden. Beim Prostatakarzinom dagegen zeichnet sich mit Hilfe neuer Tracer, die beispielsweise das prostataspezifische Membranantigen (PSMA) als Zielstruktur haben, eine Trendwende in der bisherigen Diagnostik ab. Hier scheint sich die „68Ga-PSMA-PET“ als zukünftige Standarddiagnostik zu etablieren.

Abstract

The use of positron emission tomography (PET) is an established method for the diagnosis of urological malignancies. Several tracers are currently available to obtain metabolic information or directly detect molecular targets. While 18F-FDG-PET is recognized in current guidelines for the staging of seminoma, PET is not used in clinical routine in renal malignancies due to the lack of specific tracers. Despite initial promising results in bladder cancer, no relevant additional diagnostic value with PET using 18F-FDG or choline-based tracers could be obtained in most patients and therefore should be used with caution or only within clinical trials. In prostate cancer, however, after development of new tracers that, for example, target prostate-specific membrane antigen (PSMA), a paradigm shift in imaging can be recognized. Here, 68Ga-PSMA-PET might be included in the future as part of standard imaging work-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Abbreviations

FDG:

Fluorodeoxyglukose

Ga:

Gallium

PSMA:

prostataspezifisches Antigen

PET:

Positronenemissionstomographie

Literatur

  1. Afshar-Oromieh A, Avtzi E, Giesel FL et al (2015) The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 42:197–209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Afshar-Oromieh A, Haberkorn U, Eder M et al (2012) [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur J Nucl Med Mol Imaging 39:1085–1086

    Article  CAS  PubMed  Google Scholar 

  3. Afshar-Oromieh A, Zechmann CM, Malcher A et al (2014) Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 41:11–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Albers P, Albrecht W, Algaba F et al (2011) EAU guidelines on testicular cancer: 2011 update. Eur Urol 60:304–319

    Article  PubMed  Google Scholar 

  5. AWMF (2014) Interdisziplinäre Leitlinie der Qualität S3 zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms. AWMF, Düsseldorf

  6. Bandari RP, Jiang Z, Reynolds TS et al (2014) Synthesis and biological evaluation of copper-64 radiolabeled [DUPA-6-Ahx-(NODAGA)-5-Ava-BBN(7–14)NH2], a novel bivalent targeting vector having affinity for two distinct biomarkers (GRPr/PSMA) of prostate cancer. Nucl Med Biol 41:355–363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Banerjee SR, Pullambhatla M, Foss CA et al (2014) (6)(4)Cu-labeled inhibitors of prostate-specific membrane antigen for PET imaging of prostate cancer. J Med Chem 57:2657–2669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Becherer A, De Santis M, Karanikas G et al (2005) FDG PET is superior to CT in the prediction of viable tumour in post-chemotherapy seminoma residuals. Eur J Radiol 54:284–288

    Article  PubMed  Google Scholar 

  9. Bertolini R, Goepfert C, Andrieu T et al (2015) 18F-RB390: innovative ligand for imaging the T877A androgen receptor mutant in prostate cancer via positron emission tomography (PET). Prostate 75:348–359

    Article  CAS  PubMed  Google Scholar 

  10. Brogsitter C, Zophel K, Kotzerke J (2013) 18F-Choline, 11C-choline and 11C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging 40(Suppl 1):18–27

    Article  CAS  Google Scholar 

  11. Brunocilla E, Ceci F, Schiavina R et al (2014) Diagnostic accuracy of (11)C-choline PET/CT in preoperative lymph node staging of bladder cancer: a systematic comparison with contrast-enhanced CT and histologic findings. Clin Nucl Med 39:308–312

    Article  Google Scholar 

  12. Buchegger F, Garibotto V, Zilli T et al (2014) First imaging results of an intraindividual comparison of (11)C-acetate and (18)F-fluorocholine PET/CT in patients with prostate cancer at early biochemical first or second relapse after prostatectomy or radiotherapy. Eur J Nucl Med Mol Imaging 41:68–78

    Article  CAS  PubMed  Google Scholar 

  13. Bundschuh RA, Wendl CM, Weirich G et al (2013) Tumour volume delineation in prostate cancer assessed by [11C]choline PET/CT: validation with surgical specimens. Eur J Nucl Med Mol Imaging 40:824–831

    Article  PubMed  Google Scholar 

  14. Chatalic KL, Franssen GM, Van Weerden WM et al (2014) Preclinical comparison of Al18F- and 68Ga-labeled gastrin-releasing peptide receptor antagonists for PET imaging of prostate cancer. J Nucl Med 55:2050–2056

    Article  CAS  PubMed  Google Scholar 

  15. Couture F, Levesque C, Dumulon-Perreault V et al (2014) PACE4-based molecular targeting of prostate cancer using an engineered (6)(4)Cu-radiolabeled peptide inhibitor. Neoplasia 16:634–643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. De Santis M, Becherer A, Bokemeyer C et al (2004) 2–18fluoro-deoxy-D-glucose positron emission tomography is a reliable predictor for viable tumor in postchemotherapy seminoma: an update of the prospective multicentric SEMPET trial. J Clin Oncol 22:1034–1039

    Article  Google Scholar 

  17. De Santis M, Pont J (2004) The role of positron emission tomography in germ cell cancer. World J Urol 22:41–46

    Article  Google Scholar 

  18. Divgi CR, Uzzo RG, Gatsonis C et al (2013) Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. J Clin Oncol 31:187–194

    Article  PubMed  Google Scholar 

  19. Dusing RW, Peng W, Lai SM et al (2014) Prostate-specific antigen and prostate-specific antigen velocity as threshold indicators in 11C-acetate PET/CTAC scanning for prostate cancer recurrence. Clin Nucl Med 39:777–783

    Article  PubMed Central  PubMed  Google Scholar 

  20. Eder M, Schafer M, Bauder-Wust U et al (2014) Preclinical evaluation of a bispecific low-molecular heterodimer targeting both PSMA and GRPR for improved PET imaging and therapy of prostate cancer. Prostate 74:659–668

    Article  CAS  PubMed  Google Scholar 

  21. Eiber M, Maurer T, Souvatzoglou M et al (2015) Evaluation of hybrid 68Ga-PSMA-ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med 56(5):668–674. pii: jnumed.115.154153

  22. Eiber M, Nekolla SG, Maurer T et al (2014) Ga-PSMA PET/MR with multimodality image analysis for primary prostate cancer. Abdom Imaging (Epub ahead of print)

  23. Evangelista L, Cimitan M, Zattoni F et al (2015) Comparison between conventional imaging (abdominal-pelvic computed tomography and bone scan) and [F]choline positron emission tomography/computed tomography imaging for the initial staging of patients with intermediate- to high-risk prostate cancer: a retrospective analysis. Scand J Urol 3:1–9

    Article  Google Scholar 

  24. Evangelista L, Guttilla A, Zattoni F et al (2013) Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol 63:1040–1048

    Article  PubMed  Google Scholar 

  25. Giovacchini G, Incerti E, Mapelli P et al (2015) [C]Choline PET/CT predicts survival in hormone-naive prostate cancer patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging 42(6):877–884

    Article  CAS  PubMed  Google Scholar 

  26. Giovacchini G, Picchio M, Garcia-Parra R et al (2014) 11C-choline PET/CT predicts prostate cancer-specific survival in patients with biochemical failure during androgen-deprivation therapy. J Nucl Med 55:233–241

    Article  CAS  PubMed  Google Scholar 

  27. Golan S, Sopov V, Baniel J et al (2011) Comparison of 11C-choline with 18F-FDG in positron emission tomography/computerized tomography for staging urothelial carcinoma: a prospective study. J Urol 186:436–441

    Article  PubMed  Google Scholar 

  28. Goodfellow H, Viney Z, Hughes P et al (2014) Role of fluorodeoxyglucose positron emission tomography (FDG PET)-computed tomography (CT) in the staging of bladder cancer. BJU Int 114:389–395

    CAS  PubMed  Google Scholar 

  29. Graziani T, Ceci F, Lopes FL et al (2015) 11C-choline PET/CT for restaging of bladder cancer. Clin Nucl Med 40:1–5

    Article  Google Scholar 

  30. Heck MM, Souvatzoglou M, Retz M et al (2014) Prospective comparison of computed tomography, diffusion-weighted magnetic resonance imaging and [11C]choline positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer patients. Eur J Nucl Med Mol Imaging 41:694–701

    Article  PubMed  Google Scholar 

  31. Hitier-Berthault M, Ansquer C, Branchereau J et al (2013) 18F-fluorodeoxyglucose positron emission tomography-computed tomography for preoperative lymph node staging in patients undergoing radical cystectomy for bladder cancer: a prospective study. Int J Urol 20:788–796

    Article  CAS  PubMed  Google Scholar 

  32. Huddart RA, O’doherty MJ, Padhani A et al (2007) 18fluorodeoxyglucose positron emission tomography in the prediction of relapse in patients with high-risk, clinical stage I nonseminomatous germ cell tumors: preliminary report of MRC Trial TE22 – the NCRI Testis Tumour Clinical Study Group. J Clin Oncol 25:3090–3095

    Article  PubMed  Google Scholar 

  33. Israel I, Richter D, Stritzker J et al (2014) PET imaging with [(6)(8)Ga]NOTA-RGD for prostate cancer: a comparative study with [(1)(8)F]fluorodeoxyglucose and [(1)(8)F]fluoroethylcholine. Curr Cancer Drug Targets 14:371–379

    Article  CAS  PubMed  Google Scholar 

  34. Jeong IG, Hong S, You D et al (2015) FDG PET-CT for lymph node staging of bladder cancer: a prospective study of patients with extended pelvic lymphadenectomy. Ann Surg Oncol (Epub ahead of print)

  35. Kahkonen E, Jambor I, Kemppainen J et al (2013) In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res19:5434–5443

    Article  Google Scholar 

  36. Kibel AS, Dehdashti F, Katz MD et al (2009) Prospective study of [18F]fluorodeoxyglucose positron emission tomography/computed tomography for staging of muscle-invasive bladder carcinoma. J Clin Oncol 27:4314–4320

    Article  PubMed Central  PubMed  Google Scholar 

  37. Kjolhede H, Ahlgren G, Almquist H et al (2014) (1)(8)F-fluorocholine PET/CT compared with extended pelvic lymph node dissection in high-risk prostate cancer. World J Urol 32:965–970

    Article  CAS  PubMed  Google Scholar 

  38. Knowles SM, Tavare R, Zettlitz KA et al (2014) Applications of immunoPET: using 124I-anti-PSCA A11 minibody for imaging disease progression and response to therapy in mouse xenograft models of prostate cancer. Clin Cancer Res 20:6367–6378

    Article  CAS  PubMed  Google Scholar 

  39. Kollberg P, Almquist H, Blackberg M et al (2015) [F]Fluorodeoxyglucose – positron emission tomography/computed tomography improves staging in patients with high-risk muscle-invasive bladder cancer scheduled for radical cystectomy. Scand J Urol 26:1–6

    Article  Google Scholar 

  40. Krause BJ, Souvatzoglou M, Tuncel M et al (2008) The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 35:18–23

    Article  CAS  PubMed  Google Scholar 

  41. Lesche R, Kettschau G, Gromov AV et al (2014) Preclinical evaluation of BAY 1075553, a novel (18)F-labelled inhibitor of prostate-specific membrane antigen for PET imaging of prostate cancer. Eur J Nucl Med Mol Imaging 41:89–101

    Article  CAS  PubMed  Google Scholar 

  42. Maurer T, Beer AJ, Wester HJ et al (2014) Positron emission tomography/magnetic resonance imaging with 68Gallium-labeled ligand of prostate-specific membrane antigen: promising novel option in prostate cancer imaging? Int J Urol 21:1286–1288

    Article  CAS  PubMed  Google Scholar 

  43. Maurer T, Gschwend JE, Wester H-J et al (2015) PET imaging with of prostate-specific membrane antigen (PSMA) for staging of primary prostate cancer with 68Ga-HBED-PSMA. ASCO Annual Meeting, Chicago

  44. Maurer T, Horn T, Souvatzoglou M et al (2014) Prognostic value of 11C-choline PET/CT and CT for predicting survival of bladder cancer patients treated with radical cystectomy. Urol Int 93:207–213

    Article  CAS  PubMed  Google Scholar 

  45. Maurer T, Souvatzoglou M, Kubler H et al (2012) Diagnostic efficacy of [11C]choline positron emission tomography/computed tomography compared with conventional computed tomography in lymph node staging of patients with bladder cancer prior to radical cystectomy. Eur Urol 61:1031–1038

    Article  PubMed  Google Scholar 

  46. Maurer T, Weirich G, Schottelius M et al (2015) Prostate-specific membrane antigen-radioguided surgery for metastatic lymph nodes in prostate cancer. Eur Urol (Epub ahead of print). pii: S0302-2838(15)00376-0. doi: 10.1016/j.eururo.2015.04.034

  47. Mease RC, Foss CA, Pomper MG (2013) PET imaging in prostate cancer: focus on prostate-specific membrane antigen. Curr Top Med Chem 13:951–962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Mertens LS, Fioole-Bruining A, Vegt E et al (2013) Impact of (18) F-fluorodeoxyglucose (FDG)-positron-emission tomography/computed tomography (PET/CT) on management of patients with carcinoma invading bladder muscle. BJU Int 112:729–734

    Article  CAS  PubMed  Google Scholar 

  49. Mertens LS, Mir MC, Scott AM et al (2014) 18F-fluorodeoxyglucose – positron emission tomography/computed tomography aids staging and predicts mortality in patients with muscle-invasive bladder cancer. Urology 83:393–398

    Article  PubMed  Google Scholar 

  50. Mohsen B, Giorgio T, Rasoul ZS et al (2013) Application of C-11-acetate positron-emission tomography (PET) imaging in prostate cancer: systematic review and meta-analysis of the literature. BJU Int 112:1062–1072

    Article  CAS  PubMed  Google Scholar 

  51. Namura K, Minamimoto R, Yao M et al (2010) Impact of maximum standardized uptake value (SUVmax) evaluated by 18-Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) on survival for patients with advanced renal cell carcinoma: a preliminary report. BMC Cancer 10:667

    Article  PubMed Central  PubMed  Google Scholar 

  52. Nanni C, Schiavina R, Brunocilla E et al (2014) 18F-FACBC compared with 11C-choline PET/CT in patients with biochemical relapse after radical prostatectomy: a prospective study in 28 patients. Clin Genitourin Cancer 12:106–110

    Article  PubMed  Google Scholar 

  53. Oechsle K, Hartmann M, Brenner W et al (2008) [18F]Fluorodeoxyglucose positron emission tomography in nonseminomatous germ cell tumors after chemotherapy: the German multicenter positron emission tomography study group. J Clin Oncol 26:5930–5935

    Article  PubMed  Google Scholar 

  54. Orevi M, Klein M, Mishani E et al (2012) 11C-acetate PET/CT in bladder urothelial carcinoma: intraindividual comparison with 11C-choline. Clin Nucl Med 37:67–72

    Article  Google Scholar 

  55. Pan D, Yan Y, Yang R et al (2014) PET imaging of prostate tumors with 18F-Al-NOTA-MATBBN. Contrast Media Mol Imaging 9:342–348

    Article  CAS  PubMed  Google Scholar 

  56. Pandit-Taskar N, O’donoghue JA, Beylergil V et al (2014) (8)(9)Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. Eur J Nucl Med Mol Imaging 41:2093–2105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Park JW, Jo MK, Lee HM (2009) Significance of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography for the postoperative surveillance of advanced renal cell carcinoma. BJU Int 103:615–619

    Article  PubMed  Google Scholar 

  58. Revheim ME, Winge-Main AK, Hagen G et al (2011) Combined positron emission tomography/computed tomography in sunitinib therapy assessment of patients with metastatic renal cell carcinoma. Clin Oncol (R Coll Radiol) 23:339–343

    Google Scholar 

  59. Richter S, Wuest M, Krieger SS et al (2013) Synthesis and radiopharmacological evaluation of a high-affinity and metabolically stabilized 18F-labeled bombesin analogue for molecular imaging of gastrin-releasing peptide receptor-expressing prostate cancer. Nucl Med Biol 40:1025–1034

    Article  CAS  PubMed  Google Scholar 

  60. Rodado-Marina S, Coronado-Poggio M, Garcia-Vicente AM et al (2014) Clinical utility of F-fluorocholine positron-emission tomography/computed tomography (PET/CT) in biochemical relapse of prostate cancer after radical treatment: results of a multicentre study. BJU Int (Epub ahead of print)

  61. Sah BR, Burger IA, Schibli R et al (2015) Dosimetry and first clinical evaluation of the new 18F-radiolabeled bombesin analogue BAY 864367 in patients with prostate cancer. J Nucl Med 56:372–378

    Article  CAS  PubMed  Google Scholar 

  62. Schoder H, Ong SC, Reuter VE et al (2012) Initial results with (11)C-acetate positron emission tomography/computed tomography (PET/CT) in the staging of urinary bladder cancer. Mol Imaging Biol 14:245–251

    Article  PubMed  Google Scholar 

  63. Schumacher MC, Radecka E, Hellstrom M et al (2015) [11C]Acetate positron emission tomography-computed tomography imaging of prostate cancer lymph-node metastases correlated with histopathological findings after extended lymphadenectomy. Scand J Urol 49:35–42

    Article  CAS  PubMed  Google Scholar 

  64. Souvatzoglou M, Weirich G, Schwarzenboeck S et al (2011) The sensitivity of [11C]choline PET/CT to localize prostate cancer depends on the tumor configuration. Clin Cancer Res 17:3751–3759

    Article  PubMed  Google Scholar 

  65. Storz E, Shah A, Zettinig O et al (2015) PSMA-PET/MRI-guided transrectal fusion biopsy for the detection of prostate cancer. EAU Annual Meeting, Madrid

  66. Sweat SD, Pacelli A, Murphy GP et al (1998) Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 52:637–640

    Article  CAS  PubMed  Google Scholar 

  67. Swinnen G, Maes A, Pottel H et al (2010) FDG-PET/CT for the preoperative lymph node staging of invasive bladder cancer. Eur Urol 57:641–647

    Article  PubMed  Google Scholar 

  68. Turkbey B, Mena E, Shih J et al (2014) Localized prostate cancer detection with 18F FACBC PET/CT: comparison with MR imaging and histopathologic analysis. Radiology 270:849–856

    Article  PubMed Central  PubMed  Google Scholar 

  69. Ueno D, Yao M, Tateishi U et al (2012) Early assessment by FDG-PET/CT of patients with advanced renal cell carcinoma treated with tyrosine kinase inhibitors is predictive of disease course. BMC Cancer 12:162

    Article  PubMed Central  PubMed  Google Scholar 

  70. Vag T, Heck MM, Beer AJ et al (2014) Preoperative lymph node staging in patients with primary prostate cancer: comparison and correlation of quantitative imaging parameters in diffusion-weighted imaging and 11C-choline PET/CT. Eur Radiol 24:1821–1826

    Article  PubMed  Google Scholar 

  71. Vercellino L, Bousquet G, Baillet G et al (2009) 18F-FDG PET/CT imaging for an early assessment of response to sunitinib in metastatic renal carcinoma: preliminary study. Cancer Biother Radiopharm 24:137–144

    Article  CAS  PubMed  Google Scholar 

  72. Viola-Villegas NT, Sevak KK, Carlin SD et al (2014) Noninvasive Imaging of PSMA in prostate tumors with (89)Zr-Labeled huJ591 engineered antibody fragments: the faster alternatives. Mol Pharm 11:3965–3973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Wang HY, Ding HJ, Chen JH et al (2012) Meta-analysis of the diagnostic performance of [18F]FDG-PET and PET/CT in renal cell carcinoma. Cancer Imaging 12:464–474

    Article  PubMed Central  PubMed  Google Scholar 

  74. Wetter A, Nensa F, Schenck M et al (2014) Combined PET imaging and diffusion-weighted imaging of intermediate and high-risk primary prostate carcinomas with simultaneous [18F] choline PET/MRI. PLoS One 9:101571

    Article  Google Scholar 

  75. Wieser G, Mansi R, Grosu AL et al (2014) Positron emission tomography (PET) imaging of prostate cancer with a gastrin releasing peptide receptor antagonist – from mice to men. Theranostics 4:412–419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Yu CY, Desai B, Ji L et al (2014) Comparative performance of PET tracers in biochemical recurrence of prostate cancer: a critical analysis of literature. Am J Nucl Med Mol Imaging 4:580–601

    PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. T. Maurer, H. Kübler, J.E. Gschwend und M. Eiber geben an, dass kein Interessenkonflikt besteht. Alle im vorliegenden Manuskript beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Maurer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurer, T., Kübler, H., Gschwend, J. et al. Positronenemissionstomographie bei urologischen Tumorerkrankungen. Urologe 54, 983–991 (2015). https://doi.org/10.1007/s00120-015-3868-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-015-3868-2

Schlüsselwörter

Keywords

Navigation