Skip to main content
Log in

Stammzelltherapie und „Tissue Engineering“ in der regenerativen Urologie

Stem cell therapy and tissue engineering in regenerative urology

  • Übersichten
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Bisher gibt es für den unteren Harntrakt keine klinisch etablierte, funktionelle Therapiemöglichkeit mittels „Tissue Engineering“. Aus der Dichte experimenteller Daten, initialen klinischen Studien und Einzelfallberichten zeichnet sich immer deutlicher ab, dass in Zukunft die Verwendung von Stammzellen die Lücke bei der Behandlung von Blasenspeicher und -entleerungsstörungen, erektiler Dysfunktion und morphologischen urothelialen Defekten des unteren Harntraktes mittels dieser individualisierten Therapie und biomedizinischer Anwendungsmöglichkeit schließen könnte.

Ergebnisse

Als Resultat der umfangreichen Forschungsarbeit in den letzten Jahren stehen die Charakterisierung verschiedener Stammzellpopulationen und die Evaluation unterschiedlicher, urologischer Therapieoptionen. Dabei wurden Aspekte der optimalen Applikation, der Migration, der Sekretion spezifischer Faktoren und des Grades der Entdifferenzierung dieser Stammzellen hinsichtlich einer höheren, therapeutischen Effektivität untersucht. Besonderes Augenmerk lag zudem auf Angiogenese und Innervation, von denen eine erfolgreiche funktionelle Geweberegeneration letztlich abhängig ist.

Schlussfolgerung

Verschiedene klinische Indikationen zur Stammzelltherapie und Geweberekonstruktion bahnen sich an und werden gegenwärtig in präklinischen und klinischen Phase-I-Studien geprüft. Diese fokussieren auf die Behandlung der Belastungsinkontinenz, Harnröhrenrekonstruktion und Vermeidung der erektilen Dysfunktion als mögliche Folge von onkologischer Beckenchirurgie.

Abstract

Background

So far there is no clinically established, effective tissue engineering therapy for dysfunction or defects of the lower urinary tract. The concentration of experimental data, initial clinical studies and individual case reports underlines that stem cell treatment for bladder storage and voiding problems, erectile dysfunction and other urothelial defects of the lower urinary tract could close the gap between individualized therapy and potential biomedical applications.

Results

As a result of fundamental research work over the last decade a characterization of various stem cell populations and evaluation of different urological therapy options could be performed. Thereby, aspects of optimal administration, migration, secretion of bioactive factors and stage of differentiation of stem cells with respect to an improved efficiency of treatment were investigated. Because successful tissue regeneration depends on angiogenesis and innervation, particular attention was paid to these important factors.

Conclusions

Various clinical indications for stem cell treatment and tissue reconstruction that may be required after radical prostatectomy, such as stress urinary incontinence, urethral reconstruction and erectile dysfunction have materialized and are currently being verified in preclinical studies and phase I trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Milsom I (2009) Lower urinary tract symptoms in women. Curr Opin Urol 19:337–341. doi:10.1097/MOU.0b013e32832b659d

    Article  PubMed  Google Scholar 

  2. Defade BP, Carson CC 3rd, Kennelly MJ (2011) Postprostatectomy erectile dysfunction: the role of penile rehabilitation. Rev Urol 13:6–13

    PubMed  PubMed Central  Google Scholar 

  3. Stothers L, Friedman B (2011) Risk factors for the development of stress urinary incontinence in women. Curr Urol Rep 12:363–369. doi:10.1007/s11934-011-0215-z

    Article  PubMed  Google Scholar 

  4. Fu Q, Song XF, Liao GL et al (2010) Myoblasts differentiated from adipose-derived stem cells to treat stress urinary incontinence. Urology 75:718–723. doi:S0090-4295(09)02702-2 [pii] 10.1016/j.urology.2009.10.003

    Article  PubMed  Google Scholar 

  5. Huang YC, Shindel AW, Ning H et al (2010) Adipose derived stem cells ameliorate hyperlipidemia associated detrusor overactivity in a rat model. J Urol 183:1232–1240. doi:S0022-5347(09)02898-5 [pii] 10.1016/j.juro.2009.11.012

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Ortiz LA, Gambelli F, McBride C et al (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 100:8407–8411. doi:10.1073/pnas.1432929100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Atala A, Bauer SB, Soker S et al (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246. doi:S0140-6736(06)68438-9 [pii] 10.1016/S0140-6736(06)68438-9

    Article  PubMed  Google Scholar 

  8. Chung SY, Krivorov NP, Rausei V et al (2005) Bladder reconstitution with bone marrow derived stem cells seeded on small intestinal submucosa improves morphological and molecular composition. J Urol 174:353–359. doi:S0022-5347(05)60129-2 [pii] 10.1097/01.ju.0000161592.00434.c1

    Article  PubMed  Google Scholar 

  9. Jack GS, Zhang R, Lee M et al (2009) Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials 30:3259–3270. doi:S0142-9612(09)00228-2 [pii] 10.1016/j.biomaterials.2009.02.035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Woo LL, Hijaz A, Pan HQ et al (2009) Simulated childbirth injuries in an inbred rat strain. Neurourol Urodyn 28:356–361. doi:10.1002/nau.20644

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bongso A, Fong CY, Gauthaman K (2008) Taking stem cells to the clinic: major challenges. J Cell Biochem 105:1352–1360. doi:10.1002/jcb.21957

    Article  PubMed  CAS  Google Scholar 

  12. Choumerianou DM, Dimitriou H, Kalmanti M (2008) Stem cells: promises versus limitations. Tissue Eng Part B Rev 14:53–60. doi:10.1089/teb.2007.0216

    Article  PubMed  CAS  Google Scholar 

  13. Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9:204. doi:ar2116 [pii] 10.1186/ar2116

    Google Scholar 

  14. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247

    Article  PubMed  CAS  Google Scholar 

  15. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749. doi:2007-0197 [pii] 10.1634/stemcells.2007-0197

    Article  PubMed  CAS  Google Scholar 

  16. Ahrens N, Tormin A, Paulus M et al (2004) Mesenchymal stem cell content of human vertebral bone marrow. Transplantation 78:925–929

    Article  PubMed  Google Scholar 

  17. Furuta A, Carr LK, Yoshimura N, Chancellor MB (2007) Advances in the understanding of sress urinary incontinence and the promise of stem-cell therapy. Rev Urol 9:106–112

    PubMed  PubMed Central  Google Scholar 

  18. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928–1942. doi:10.1002/1529-0131(200108)44:8

    Article  Google Scholar 

  19. Lee OK, Kuo TK, Chen WM et al (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675. doi:10.1182/blood-2003-05-1670

    Article  PubMed  CAS  Google Scholar 

  20. Miao Z, Jin J, Chen L et al (2006) Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 30:681–687. doi:10.1016/j.cellbi.2006.03.009

    Article  PubMed  CAS  Google Scholar 

  21. Roubelakis MG, Pappa KI, Bitsika V et al (2007) Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev 16:931–952. doi:10.1089/scd.2007.0036

    Article  PubMed  CAS  Google Scholar 

  22. Zhang Y, McNeill E, Tian H et al (2008) Urine derived cells are a potential source for urological tissue reconstruction. J Urol 180:2226–2233. doi:S0022-5347(08)01820-X [pii] 10.1016/j.juro.2008.07.023

    Article  PubMed  CAS  Google Scholar 

  23. Drewa T, Joachimiak R, Kaznica A et al (2009) Hair stem cells for bladder regeneration in rats: preliminary results. Transplant Proc 41:4345–4351. doi:S0041-1345(09)01334-7 [pii] 10.1016/j.transproceed.2009.08.059

    Article  PubMed  CAS  Google Scholar 

  24. Usas A, Huard J (2007) Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials 28:5401–5406. doi:S0142-9612(07)00711-9 [pii] 10.1016/j.biomaterials.2007.09.008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Yanez R, Lamana ML, Garcia-Castro J et al (2006) Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 24:2582–2591. doi:10.1634/stemcells.2006-0228

    Article  PubMed  CAS  Google Scholar 

  26. in’t Anker PS, Noort WA, Scherjon SA et al (2003) Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 88:845–852

    Google Scholar 

  27. Morsczeck C, Götz W, Schierholz J et al (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165. doi:10.1016/j.matbio.2004.12.004

    Article  PubMed  CAS  Google Scholar 

  28. Bailey AM, Kapur S, Katz AJ (2010) Characterization of adipose-derived stem cells: an update. Curr Stem Cell Res Ther 5:95–102. doi:ABSTRACT # 20 [pii]

    Article  PubMed  CAS  Google Scholar 

  29. Estes BT, Wu AW, Guilak F (2006) Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum 54:1222–1232. doi:10.1002/art.21779

    Article  PubMed  CAS  Google Scholar 

  30. Panepucci RA, Siufi JL, Silva WA Jr et al (2004) Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells 22:1263–1278. doi:22/7/1263 [pii] 10.1634/stemcells.2004-0024

    Article  PubMed  CAS  Google Scholar 

  31. Silva WA Jr, Covas DT, Panepucci RA et al (2003) The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells 21:661–669. doi:10.1634/stemcells.21-6-661

    Article  PubMed  CAS  Google Scholar 

  32. Muraglia A, Cancedda R, Quarto R (2000) Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 113(Pt 7):1161–1166

    PubMed  CAS  Google Scholar 

  33. Pilz GA, Ulrich C, Ruh M et al (2011) Human term placenta-derived mesenchymal stromal cells are less prone to osteogenic differentiation than bone marrow-derived mesenchymal stromal cells. Stem Cells Dev 20:635–646. doi:10.1089/scd.2010.0308

    Article  PubMed  CAS  Google Scholar 

  34. Drost AC, Weng S, Feil G et al (2009) In vitro myogenic differentiation of human bone marrow-derived mesenchymal stem cells as a potential treatment for urethral sphincter muscle repair. Ann NY Acad Sci 1176:135–143

    Article  PubMed  CAS  Google Scholar 

  35. Anumanthan G, Makari JH, Honea L et al (2008) Directed differentiation of bone marrow derived mesenchymal stem cells into bladder urothelium. J Urol 180:1778–1783. doi:S0022-5347(08)01140-3 [pii] 10.1016/j.juro.2008.04.076

    Article  PubMed  CAS  Google Scholar 

  36. Tian H, Bharadwaj S, Liu Y et al (2010) Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering. Tissue Eng Part A 16:1769–1779. doi:10.1089/ten.TEA.2009.0625

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Chen A, Siow B, Blamire AM et al (2010) Transplantation of magnetically labeled mesenchymal stem cells in a model of perinatal brain injury. Stem Cell Res 5:255–266. doi:10.1016/j.scr.2010.08.004

    Article  PubMed  Google Scholar 

  38. Phadnis SM, Joglekar MV, Dalvi MP et al (2011) Human bone marrow-derived mesenchymal cells differentiate and mature into endocrine pancreatic lineage in vivo. Cytotherapy 13:279–293. doi:10.3109/14653249.2010.523108

    Article  PubMed  Google Scholar 

  39. Vieira NM, Zucconi E, Bueno CR et al (2010) Human multipotent mesenchymal stromal cells from distinct sources show different in vivo potential to differentiate into muscle cells when injected in dystrophic mice. Stem Cell Rev 6:560–566. doi:10.1007/s12015-010-9187-5

    Article  PubMed  CAS  Google Scholar 

  40. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822. doi:2004-04-1559 [pii] 10.1182/blood-2004-04-1559

    Article  PubMed  CAS  Google Scholar 

  41. Klyushnenkova E, Mosca JD, Zernetkina V et al (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 12:47–57. doi:10.1007/s11373-004-8183-7

    Article  PubMed  CAS  Google Scholar 

  42. Cruz M, Dissaranan C, Cotleur A et al (2012) Pelvic organ distribution of mesenchymal stem cells injected intravenously after simulated childbirth injury in female rats. Obstet Gynecol Int 61: 29–46. doi:10.1155/2012/612946

    Google Scholar 

  43. Roufosse CA, Direkze NC, Otto WR, Wright NA (2004) Circulating mesenchymal stem cells. Int J Biochem Cell Biol 36:585–597. doi:10.1016/j.biocel.2003.10.007 S1357272503003455 [pii]

    Article  PubMed  CAS  Google Scholar 

  44. Wood HM, Kuang M, Woo L et al (2008) Cytokine expression after vaginal distention of different durations in virgin Sprague-Dawley rats. J Urol 180:753–759. doi:S0022-5347(08)00923-3 [pii] 10.1016/j.juro.2008.03.182

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Bahk JY, Jung JH, Han H et al (2010) Treatment of diabetic impotence with umbilical cord blood stem cell intracavernosal transplant: preliminary report of 7 cases. Exp Clin Transplant 8:150–160

    PubMed  Google Scholar 

  46. da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–2299. doi:2007-1122 [pii] 10.1634/stemcells.2007-1122

    Article  Google Scholar 

  47. Lin G, Wang G, Banie L et al (2010) Treatment of stress urinary incontinence with adipose tissue-derived stem cells. Cytotherapy 12:88–95. doi:10.3109/14653240903350265 [pii] 10.3109/14653240903350265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Kinebuchi Y, Aizawa N, Imamura T et al (2010) Autologous bone-marrow-derived mesenchymal stem cell transplantation into injured rat urethral sphincter. Int J Urol 17:359–368. doi:IJU2471 [pii] 10.1111/j.1442-2042.2010.02471.x

    Article  PubMed  Google Scholar 

  49. Kwon D, Kim Y, Pruchnic R et al (2006) Periurethral cellular injection: comparison of muscle-derived progenitor cells and fibroblasts with regard to efficacy and tissue contractility in an animal model of stress urinary incontinence. Urology 68:449–454. doi:S0090-4295(06)00386-4 [pii] 10.1016/j.urology.2006.03.040

    Article  PubMed  Google Scholar 

  50. Corcos J, Loutochin O, Campeau L et al (2011) Bone marrow mesenchymal stromal cell therapy for external urethral sphincter restoration in a rat model of stress urinary incontinence. Neurourol Urodyn 30:447–455. doi:10.1002/nau.20998

    Article  PubMed  Google Scholar 

  51. Zhao W, Zhang C, Jin C et al (2011) Periurethral injection of autologous adipose-derived stem cells with controlled-release nerve growth factor for the treatment of stress urinary incontinence in a rat model. Eur Urol 59:155–163. doi:S0302-2838(10)01003-1 [pii] 10.1016/j.eururo.2010.10.038

    Article  PubMed  CAS  Google Scholar 

  52. Carr LK, Steele D, Steele S et al (2008) 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct 19:881–883. doi:10.1007/s00192-007-0553-z

    Article  PubMed  CAS  Google Scholar 

  53. Carr L, Robert M, Kultgen PL et al (2010) Autologous muscle-derived cells as therapy for stress urinary incontinence: a randomized, dose-ranging trial. J Urol 183:e587–e588. doi:10.1016/j.juro.2010.02.2368

    Article  Google Scholar 

  54. Peters K, Kaufman M, Dmochowski R et al (2011) Autologous muscle derived cell therapy for the treatment of female stress urinary incontinence: a multi-center experience. J Urol 185:e535–e536. doi:10.1016/j.juro.2011.02.1161

    Article  Google Scholar 

  55. Nishijima S, Sugaya K, Miyazato M et al (2007) Restoration of bladder contraction by bone marrow transplantation in rats with underactive bladder. Biomed Res 28:275–280. doi:JST.JSTAGE/biomedres/28.275 [pii]

    Article  PubMed  CAS  Google Scholar 

  56. Albersen M, Fandel TM, Lin G et al (2010) Injections of adipose tissue-derived stem cells and stem cell lysate improve recovery of erectile function in a rat model of cavernous nerve injury. J Sex Med 7:3331–3340. doi:10.1111/j.1743-6109.2010.01875.x JSM1875 [pii]

    Article  PubMed  Google Scholar 

  57. Atala A (2011) Tissue engineering of human bladder. Br Med Bull 97:81–104. doi:ldr003 [pii] 10.1093/bmb/ldr003

    Article  PubMed  Google Scholar 

  58. Zou XH, Zhi YL, Chen X et al (2010) Mesenchymal stem cell seeded knitted silk sling for the treatment of stress urinary incontinence. Biomaterials 31:4872–4879. doi:S0142-9612(10)00302-9 [pii] 10.1016/j.biomaterials.2010.02.056

    Article  PubMed  CAS  Google Scholar 

  59. Feil G, Maurer S, Nagele U et al (2008) Bioartificial urothelium generated from bladder washings. A future therapeutic option for reconstructive surgery. Urologe A 47:1091–1092, 1094–1096. doi:10.1007/s00120-008-1849-4

    Article  PubMed  CAS  Google Scholar 

  60. Nagele U, Maurer S, Feil G et al (2008) In vitro investigations of tissue-engineered multilayered urothelium established from bladder washings. Eur Urol 54:1414–1422. doi:S0302-2838(08)00123-1 [pii] 10.1016/j.eururo.2008.01.072

    Article  PubMed  Google Scholar 

  61. Sievert KD, Selent-Stier C, Wiedemann J et al (2012) Introducing a large animal model to create urethral stricture similar to human stricture disease: a comparative experimental microscopic study. J Urol 187:1101–1109. doi:S0022-5347(11)05455-3 [pii] 10.1016/j.juro.2011.10.132

    Article  PubMed  Google Scholar 

  62. Lai JY, Yoon CY, Yoo JJ et al (2002) Phenotypic and functional characterization of in vivo tissue engineered smooth muscle from normal and pathological bladders. J Urol 168:1853–1857 (discussion 1858). doi:10.1097/01.ju.0000030040.76258.5a

    Article  PubMed  Google Scholar 

  63. Subramaniam R, Hinley J, Stahlschmidt J, Southgate J (2011) Tissue engineering potential of urothelial cells from diseased bladders. J Urol 186:2014–2020. doi:S0022-5347(11)04380-1 [pii] 10.1016/j.juro.2011.07.031

    Article  PubMed  CAS  Google Scholar 

  64. Sharma AK, Bury MI, Fuller NJ et al (2011) A nonhuman primate model for urinary bladder regeneration using autologous sources of bone marrow-derived mesenchymal stem cells. Stem Cells 29:241–250. doi:10.1002/stem.568

    Article  PubMed  CAS  Google Scholar 

  65. De Filippo RE, Yoo JJ, Atala A (2002) Urethral replacement using cell seeded tubularized collagen matrices. J Urol 168:1789–1792 (discussion 1792–1783). doi:10.1097/01.ju.0000027662.69103.72

    Article  Google Scholar 

  66. Raya-Rivera A, Esquiliano DR (2011) Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 377:1175–1182. doi:S0140-6736(10)62354-9 [pii] 10.1016/S0140-6736(10)62354-9

    Article  PubMed  Google Scholar 

  67. Franke K, Baur M, Daum L et al (2013) Prostate carcinoma cell growth-inhibiting hydrogel supports axonal regeneration in vitro. Neurosci Lett 541:248–252. doi:10.1016/j.neulet.2013.01.057

    Article  PubMed  CAS  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Vaegler, B. Amend, W. Aicher, A. Stenzl und K.-D. Sievert geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-D. Sievert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaegler, M., Amend, B., Aicher, W. et al. Stammzelltherapie und „Tissue Engineering“ in der regenerativen Urologie. Urologe 52, 1671–1678 (2013). https://doi.org/10.1007/s00120-013-3328-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-013-3328-9

Schlüsselwörter

Keywords

Navigation