Skip to main content
Log in

Harnblasenkarzinomzelllinien als Modellsysteme zur Pathobiologie des Harnblasenkarzinoms

Überblick und Etablierung einer neuen Progressionsserie

Bladder carcinoma cell lines as models of the pathobiology of bladder cancer

Review of the literature and establishment of a new progression series

  • Originalien
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Tumorzelllinien stellen wertvolle präklinische Modelle sowohl zur Aufklärung tumorbiologischer Mechanismen als auch zur Identifizierung therapeutischer Zielstrukturen und Prüfung von pharmakologisch aktiven Wirkstoffen dar. Aus menschlichen Harnblasenkarzinomen wurden bisher etwa 50 Tumorzelllinien etabliert, vorwiegend aus invasiven und metastatischen Tumoren. Zwei davon (T24 und 253J) wurden experimentell zu mehreren Progressionsserien weiterentwickelt. Diese Modelle haben wichtige neue Erkenntnisse zu späteren Phasen der Tumorprogression und metastatischen Disseminierung erbracht. Nur wenige Zelllinien stehen allerdings als Modelle der papillären Harnblasenkarzinogenese zur Verfügung, zudem keine Progressionsserie aus nichtinvasiven, papillären Harnblasentumorzelllinien.

Material und Methode

Während der Etablierung einer Doxorubicin-resistenten Variante der papillären Harnblasenkarzinomzelllinie BFTC-905 haben wir eine Zellkolonie identifiziert, die offenbar Zellen mit unterschiedlichem Wachstumsmuster beinhaltete. Die anschließende Subkultivierung ergab 3 Tochterzelllinien: BFTC-905-kompakt, BFTC-905-diffus und BFTC-905-diffus M. Zu ihrer grundlegenden Charakterisierung wurde die Zellmorphologie, die membranständige Expression von E-Cadherin, der Karyotyp sowie Invasivität und Klonogenität im Agar untersucht. Die klonale Herkunft der BFTC-905-Tochterzelllinien wurde mittels molekulargenetischer Methoden analysiert.

Ergebnisse

Die Zelllinien der BFTC-905-Progressionsserie weisen Unterschiede in mehreren transformationsrelevanten phänotypischen Charakteristika auf. Die beiden diffusen Zelllinien (BFTC-905-diffus und BFTC-905-diffus M) unterschieden sich von der BFTC-905-kompakt-Zelllinie durch ihr deutlich weniger organisiertes Wachstumsmuster, das neben aneinander adhärierenden Zellen auch isoliert wachsende Zellen beinhaltete – dieser relative Verlust der Zell-Zell-Adhäsion ging mit entsprechendem Verlust der membranständigen Expression von E-Cadherin einher. Bei der BFTC-905-diffus-M-Tochterzelllinie wurde eine dramatische Zunahme der Chromosomenanzahl zu einem hypertetraploiden Karyotyp gefunden. Gleichzeitig kam es bei dieser Tochterzelllinie zur Entwicklung der Fähigkeit zum verankerungsunabhängigen Wachstum im Weichagar. Alle 3 Zelllinien der BFTC-905-Progressionsserie blieben nichtinvasiv. Die molekulargenetische Herkunftsanalyse bestätigte den klonalen Ursprung der Zelllinien.

Schlussfolgerungen

Die neu etablierte BFTC-905-Progressionsserie weist gegenüber anderen publizierten Progressionsserien 2 Charakteristika der frühen Progression des Harnblasenkarzinoms auf, nämlich eine dynamische Veränderung der Expression von E-Cadherin und eine komplexe karyotypische Entwicklung. Daher könnte sie zum weiteren Verständnis der Pathobiologie des Harnblasenkarzinoms wesentlich beitragen.

Abstract

Background

Tumour cell lines represent valuable preclinical models to decipher underlying biology and identify potential therapy targets and pharmacologically useful compounds. Approximately 50 human bladder cancer cell lines have been established to date, mainly from invasive and metastatic tumours. Two of these, namely T24 and 253J, were experimentally further developed into progression series. These models have provided important insights into later tumour progression events and metastatic dissemination. Only a few cell lines are available as models of non-invasive papillary bladder cancer and no progression series have yet been established.

Material and methods

During the course of establishing a doxorubicin-resistant variant cell line of the human papillary bladder carcinoma cell line BFTC-905, a unique cell colony was identified, apparently involving cells with divergent growth patterns. Subsequent subculturing yielded three daughter cell lines, BFTC-905-compact, BFTC-905-diffuse und BFTC-905-diffuse M. Their fundamental characterization included basic cell morphology, cell membrane expression of E-Cadherin, karyotype analysis, invasion and colony forming capacity in soft agar. The clonal origin of the newly established daughter cell lines was assessed by means of molecular genetic methods.

Results

We could identify important differences in multiple transformation related traits among the cell lines of the BFTC-905 progression series. Both diffuse cell lines (BFTC-905-diffuse und BFTC-905-diffuse M) differed from the BFTC-905-compact cell line by growing in a less organized,“diffuse” manner, which involved colonies of cells exhibiting apparently normal cell-to-cell adhesion as well as individual cells outside of them. This diminution of the cell-to-cell adhesion was accompanied by a corresponding decrease of membranous E-Cadherin. The BFTC-905-diffuse M cell line displayed a dramatic increase in the overall chromosome number, resulting in a hypertetraploid karyotype. At the same time, this cell line, as the only one in the progression series, acquired the ability to grow independent of anchorage in soft agar. All three cell lines remained noninvasive. Allelic distribution of highly polymorphic DNA-markers in the cell lines of the BFTC-905 progression series provided unequivocal evidence of their common origin.

Conclusion

The newly established BFTC-905 progression series manifests two aspects of the early progression of non-invasive bladder carcinoma, not exhibited by any other progression series published so far, namely dynamic changes in the expression of E-Cadherin and a complex karyotypic evolution. It may thus contribute important insights into further understanding of the pathobiology of bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Abbreviations

BBN:

N-butyl-N-(4-hydroxybutyl)-nitrosamine

CGH:

comparative genomic hybridization

DMEM:

Dulbecco’s modified Eagle’s medium

EDTA:

ethylenediamine tetraacetic acid

EMT:

epithelial-to-mesenchymal transition

FANF:

N-[4-(5-nitro-2-furyl)-2-thiasolyl]-formamide

FITC:

fluorescein isothiocyanate

MMP:

matrix metalloproteinase

MNU:

N-methyl-N-nitrosourea

PBS:

phospate-buffered saline

RT:

Raumtemperatur

SV40:

Simian virus 40

SCID:

severe combined immunodeficiency

TIMP:

tissue inhibitor of metalloproteinases

Literatur

  1. Baak JP, Bol MG, Diermen B van et al. (2003) DNA cytometric features in biopsies of TaT1 urothelial cell cancer predict recurrence and stage progression more accurately than stage, grade, or treatment modality. Urology 61: 1266–1272

    Article  PubMed  Google Scholar 

  2. Bindels EM, Vermey M, Beemd R van den et al. (2000) E-cadherin promotes intraepithelial expansion of bladder carcinoma cells in an in vitro model of carcinoma in situ. Cancer Res 60: 177–183

    PubMed  CAS  Google Scholar 

  3. Bindels EM, Vermey M, De Both NJ, Kwast TH van der (2001) Influence of the microenvironment on invasiveness of human bladder carcinoma cell lines. Virchows Arch 439: 552–559

    Article  PubMed  CAS  Google Scholar 

  4. Bubenik J, Baresova M, Viklicky V et al. (1973) Established cell line of urinary bladder carcinoma (T24) containing tumour-specific antigen. Int J Cancer 11: 765–773

    Article  PubMed  CAS  Google Scholar 

  5. Byrne RR, Shariat SF, Brown R et al. (2001) E-cadherin immunostaining of bladder transitional cell carcinoma, carcinoma in situ and lymph node metastases with long-term followup. J Urol 165: 1473–1479

    Article  PubMed  CAS  Google Scholar 

  6. Chaffer CL, Dopheide B, McCulloch DR et al. (2005) Upregulated MT1-MMP/TIMP-2 axis in the TSU-Pr1-B1/B2 model of metastatic progression in transitional cell carcinoma of the bladder. Clin Exp Metastasis 22: 115–125

    Article  PubMed  CAS  Google Scholar 

  7. Chaffer CL, Brennan JP, Slavin JL et al. (2006) Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 66: 11271–11278

    Article  PubMed  CAS  Google Scholar 

  8. Crallan RA, Georgopoulos NT, Southgate J (2006) Experimental models of human bladder carcinogenesis. Carcinogenesis 27: 374–381

    Article  PubMed  CAS  Google Scholar 

  9. Dinney CP, Fishbeck R, Singh RK et al. (1995) Isolation and characterization of metastatic variants from human transitional cell carcinoma passaged by orthotopic implantation in athymic nude mice. J Urol 154: 1532–1538

    Article  PubMed  CAS  Google Scholar 

  10. Elliott AY, Cleveland P, Cervenka J et al. (1974) Characterization of a cell line from human transitional cell cancer of the urinary tract. J Natl Cancer Inst 53: 1341–1349

    PubMed  CAS  Google Scholar 

  11. Engeler DS, Schmid HP (2003) Das Blasenkarzinom – eine aktuelle Übersicht. Schweiz Rundsch Med Prax 92: 117–126

    PubMed  CAS  Google Scholar 

  12. Gildea JJ, Golden WL, Harding MA, Theodorescu D (2000) Genetic and phenotypic changes associated with the acquisition of tumorigenicity in human bladder cancer. Genes Chromosomes Cancer 27: 252–263

    Article  PubMed  CAS  Google Scholar 

  13. Gildea JJ, Seraj MJ, Oxford G et al. (2002) RhoGDI2 is an invasion and metastasis suppressor gene in human cancer. Cancer Res 62: 6418–6423

    PubMed  CAS  Google Scholar 

  14. Giroldi LA, Bringuier PP, Shimazui T et al. (1999) Changes in cadherin-catenin complexes in the progression of human bladder carcinoma. Int J Cancer 82: 70–76

    Article  PubMed  CAS  Google Scholar 

  15. Golka K, Goebell PJ, Rettenmeier AW (2007) Ätiologie und Prävention des Harnblasenkarzinoms. Dtsch Arztebl 104: 719–723

    Google Scholar 

  16. Habuchi T (2005) Origin of multifocal carcinomas of the bladder and upper urinary tract: molecular analysis and clinical implications. Int J Urol 12: 709–716

    Article  PubMed  CAS  Google Scholar 

  17. Huckenbeck W, Kuntze K, Scheil H-G (1997) The distribution of the human DNA-PCR polymorphisms. Köster, Berlin

  18. Jones TD, Wang M, Eble JN et al. (2005) Molecular evidence supporting field effect in urothelial carcinogenesis. Clin Cancer Res 11: 6512–6519

    Article  PubMed  CAS  Google Scholar 

  19. Knüchel R, Hofstädter F (1994) In-vitro-Kultur: vom Gewebe zur Zelllinie. Pathologe 15: 141–149

    Article  PubMed  Google Scholar 

  20. Knüchel R, Masters JRW (1999) Bladder cancer. In: Masters JRW, Palsson B (eds) Human cell culture, Vol. 1. Kluwer, Dordrecht, pp 213–230

  21. Kovnat A, Buick RN, Choo B et al. (1988) Malignant properties of sublines selected from a human bladder cancer cell line that contains an activated c-Ha-ras oncogene. Cancer Res 48: 4993–5000

    PubMed  CAS  Google Scholar 

  22. Li M, Cannizzaro LA (1999) Identical clonal origin of synchronous and metachronous low-grade, noninvasive papillary transitional cell carcinomas of the urinary tract. Hum Pathol 30: 1197–1200

    Article  PubMed  CAS  Google Scholar 

  23. Locke M, Heywood M, Fawell S, Mackenzie IC (2005) Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines. Cancer Res 65: 8944–8950

    Article  PubMed  CAS  Google Scholar 

  24. Marshall CJ, Franks LM, Carbonell AW (1977) Markers of neoplastic transformation in epithelial cell lines derived from human carcinomas. J Natl Cancer Inst 58: 1743–1751

    PubMed  CAS  Google Scholar 

  25. Masters JR, Hepburn PJ, Walker L et al. (1986) Tissue culture model of transitional cell carcinoma: characterization of twenty-two human urothelial cell lines. Cancer Res 46: 3630–3636

    PubMed  CAS  Google Scholar 

  26. Nicholson BE, Frierson HF, Conaway MR et al. (2004) Profiling the evolution of human metastatic bladder cancer. Cancer Res 64: 7813–7821

    Article  PubMed  CAS  Google Scholar 

  27. Oliveira PA, Colaco A, De la Cruz PL, Lopes C (2006) Experimental bladder carcinogenesis – rodent models. Exp Oncol 28: 2–11

    PubMed  CAS  Google Scholar 

  28. Pagliaro LC, Sharma P (2006) Review of metastatic bladder cancer. Minerva Urol Nefrol 58: 53–71

    PubMed  CAS  Google Scholar 

  29. Rebel JM, Thijssen CD, Vermey M et al. (1994) E-cadherin expression determines the mode of replacement of normal urothelium by human bladder carcinoma cells. Cancer Res 54: 5488–5492

    PubMed  CAS  Google Scholar 

  30. Sabichi A, Keyhani A, Tanaka N et al. (2006) Characterization of a panel of cell lines derived from urothelial neoplasms: genetic alterations, growth in vivo and the relationship of adenoviral mediated gene transfer to coxsackie adenovirus receptor expression. J Urol 175: 1133–1137

    Article  PubMed  CAS  Google Scholar 

  31. Schulz WA (2005) Molecular biology of human cancers. Springer, Dordrecht

  32. Schulz WA (2006) Understanding urothelial carcinoma through cancer pathways. Int J Cancer 119: 1513–1518

    Article  PubMed  CAS  Google Scholar 

  33. Seifert HH, Meyer A, Cronauer MV et al. (2007) A new and reliable culture system for superficial low-grade urothelial carcinoma of the bladder. World J Urol 25: 297–302

    Article  PubMed  Google Scholar 

  34. Seraj MJ, Harding MA, Gildea JJ et al. (2000) The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines. Clin Exp Metastasis 18: 519–525

    Article  PubMed  CAS  Google Scholar 

  35. Stetler-Stevenson WG (2004) Invasion and metastasis. In: DeVita Jr VT, Hellman S, Rosenberg SA (eds) Cancer. Principles and practice of oncology, 7th edn. Lippincott Williams & Wilkins, Philadelphia, pp 113–127

  36. Sun W, Herrera GA (2002) E-cadherin expression in urothelial carcinoma in situ, superficial papillary transitional cell carcinoma, and invasive transitional cell carcinoma. Hum Pathol 33: 996–1000

    Article  PubMed  Google Scholar 

  37. Tachibana M, Deguchi N, Baba S et al. (1991) Multivariate analysis of flow cytometric deoxyribonucleic acid parameters and histological features for prognosis of bladder cancer patients. J Urol 146: 1530–1534

    PubMed  CAS  Google Scholar 

  38. Tachibana M, Miyakawa A, Miyakawa M et al. (1999) Prognostic significance of flow cytometric deoxyribonucleic acid analysis for patients with superficial bladder cancers: a long-term follow-up study. Cancer Detect Prev 23: 155–162

    Article  PubMed  CAS  Google Scholar 

  39. Tsuda H, Fukamachi K, Ohshima Y et al. (2005) High susceptibility of human c-Ha-ras proto-oncogene transgenic rats to carcinogenesis: a cancer-prone animal model. Cancer Sci 96: 309–316

    Article  PubMed  CAS  Google Scholar 

  40. Tzeng CC, Liu HS, Li C et al. (1996) Characterization of two urothelium cancer cell lines derived from a blackfoot disease endemic area in Taiwan. Anticancer Res 16: 1797–1804

    PubMed  CAS  Google Scholar 

  41. Bokhoven A van, Varella-Garcia M, Korch C, Miller GJ (2001) TSU-Pr1 and JCA-1 cells are derivatives of T24 bladder carcinoma cells and are not of prostatic origin. Cancer Res 61: 6340–6344

    PubMed  Google Scholar 

  42. Wang LH (2004) Molecular signaling regulating anchorage-independent growth of cancer cells. Mt Sinai J Med 71: 361–367

    PubMed  Google Scholar 

  43. Wobus AM (2003) Zellkulturtechniken, Zellmodelle und Tissue Engineering. In: Ganten D, Ruckpaul K (Hrsg) Grundlagen der Molekularen Medizin, 2. Aufl. Springer, Berlin Heidelberg New York, S 255–298

  44. Wojcik EM, Brownlie RJ, Bassler TJ, Miller MC (2000) Superficial urothelial (umbrella) cells. A potential cause of abnormal DNA ploidy results in urine specimens. Anal Quant Cytol Histol 22: 411–415

    PubMed  CAS  Google Scholar 

  45. Wu X, Obata T, Khan Q et al. (2004) The phosphatidylinositol-3 kinase pathway regulates bladder cancer cell invasion. BJU Int 93: 143–150

    Article  PubMed  CAS  Google Scholar 

  46. Wu XR (2005) Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 5: 713–725

    Article  PubMed  CAS  Google Scholar 

  47. Wu Z, Siadaty MS, Riddick G et al. (2006) A novel method for gene expression mapping of metastatic competence in human bladder cancer. Neoplasia 8: 181–189

    Article  PubMed  CAS  Google Scholar 

  48. Zellweger T, Benz G, Cathomas G et al. (2006) Multi-target fluorescence in situ hybridization in bladder washings for prediction of recurrent bladder cancer. Int J Cancer 119: 1660–1665

    Article  PubMed  CAS  Google Scholar 

  49. Zhang ZT, Pak J, Shapiro E et al. (1999) Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Res 59: 3512–3517

    PubMed  CAS  Google Scholar 

  50. Zhang ZT, Pak J, Huang HY et al. (2001) Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation. Oncogene 20: 1973–1980

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Die Arbeit entstand im Rahmen einer DAAD-Gastdozentur von PD Jiri Hatina an der Heinrich-Heine-Universität Düsseldorf. Die Arbeit im Forschungslaboratorium der Urologischen Klinik der Heinrich-Heine-Universität Düsseldorf wurde teilweise durch die Christiane und Claudia-Hempel-Stiftung unterstützt. J.H. ist durch das Forschungsprojekt MSM 0021620819 des Ministeriums für Schulwesen der Tschechischen Republik gefördert. Wir danken Frau Dr. Blanka Šedivá für Hilfe bei der statistischen Analyse der Daten.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hatina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatina, J., Huckenbeck, W., Rieder, H. et al. Harnblasenkarzinomzelllinien als Modellsysteme zur Pathobiologie des Harnblasenkarzinoms. Urologe 47, 724–734 (2008). https://doi.org/10.1007/s00120-008-1687-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-008-1687-4

Schlüsselwörter

Keywords

Navigation