Skip to main content
Log in

Planungszielvolumen

Management von Ungenauigkeiten, Immobilisierung, bildgeführte und adaptive Strahlentherapie

Planning target volume

Management of uncertainties, immobilization, image guided and adaptive radiation therapy

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Klinisches/methodisches Problem

Die Strahlentherapie erfolgt standardmäßig auf Basis von CT-Aufnahmen, welche vor Beginn der Therapie gewonnen werden. Diese dienen auch der Bestimmung von Lage und Form des Zielvolumens. Da der Patient für jede Fraktion neu gelagert werden muss, können Abweichungen der Position des Tumors relativ zum Strahlungsfeld, aber auch interne Bewegungen des Tumors auftreten, welche zu Unsicherheiten führen. Diese Unsicherheiten werden im sog. Planungszielvolumen (PTV) berücksichtigt, indem ein Sicherheitssaum um das klinische Zielvolumen (CTV) im Normalgewebe addiert wird.

Radiologische Standardverfahren

Als Standard wird heute eine CT-basierte Bestrahlungsplanung vor Beginn der Therapie durchgeführt. Die daraus gewonnene Information über Lage und Form des Zielvolumens wird während des oft mehrere Wochen andauernden Bestrahlungszyklus unverändert genutzt.

Methodische Innovationen

Durch wiederholte Bildgebung des Patienten in Behandlungsposition vor jeder Fraktion kann die Lage des Tumors erneut bestimmt und für jede Fraktion korrigiert werden.

Leistungsfähigkeit

Die Reduktion der Lagerungsungenauigkeit kann für eine Reduktion des Sicherheitssaums genutzt werden. Dies führt zu einem reduzierten bestrahlten Normalgewebsvolumen.

Bewertung

Mit der Reduktion des bestrahlten Normalgewebsvolumens wird das Auftreten von Nebenwirkungen gesenkt. Dies bietet wiederum die Möglichkeit, eine erhöhte Tumorkontrolle durch Dosiseskalation zu erreichen.

Empfehlung für die Praxis

Bevor das PTV reduziert wird, muss eine genaue Analyse der Unsicherheiten für das jeweils verwendete bildgebende Verfahren und Bestrahlungstechnik durchgeführt werden.

Abstract

Clinical/methodical issue

As a standard, today’s radiation therapy is based on CT images which are used for therapy planning. These images are obtained once before therapy starts and serve as a basis to obtain the position and shape of the target volume. As the patient has to be positioned anew for each fraction, deviations of the tumor position relative to the radiation field but also internal motion of the tumor may occur. These deviations lead to uncertainties, which are taken into account by adding a safety margin around the clinical target volume (CTV) to create the planning target volume (PTV).

Standard radiological methods

As a standard today, CT-based treatment planning is used, where images are obtained once prior to therapy. The information on tumor position and shape, which is obtained from these images, is used throughout the whole cycle of radiation therapy without any change. This cycle may last several weeks.

Methodical innovations

By repeated imaging of the patient in the treatment position prior to each fraction, the position of the tumor can be assessed and corrected for each fraction.

Performance

A reduction of positioning uncertainty may be used to reduce the safety margin. This leads to a decreased volume of irradiated normal tissue.

Achievements

A reduced volume of irradiated normal tissue leads to reduced side effects and provides the opportunity of increased tumor control by dose escalation.

Practical recommendations

Before the PTV is reduced, a detailed analysis of the uncertainties for the specific imaging method and radiation technique must be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10

Literatur

  1. Thieke C (2018) „Gross tumor volume“ (GTV). Radiologe. https://doi.org/10.1007/s00117-018-0416-2

    Article  PubMed  Google Scholar 

  2. Brunner TB, Walke M, Hass P (2018) Klinisches Zielvolumen. Grundsätze und Grenzen. Radiologe. https://doi.org/10.1007/s00117-018-0414-4

    Article  PubMed  Google Scholar 

  3. Mayles P, Nahum A, Rosenwald J‑C (2007) Handbook of radiotherapy physics—theory and practice. Taylor & Francis Group, New York, London

    Book  Google Scholar 

  4. Jaffray D, Langen KM, Mageras G, Dawson LA, Yan D, Adams R, Mundt A, Fraass B (2013) Assuring safety and quality in image guided delivery of radiation therapy. Pract Radiat Oncol 3(3):1–16 Supplemental Material

    Article  Google Scholar 

  5. Landberg T, Chavaudra J, Dobbs J, Gerard J‑P, Hanks G (2016) ICRU report 62: prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50). International Commission on Radiation Units and Measurements.

    Google Scholar 

  6. Schlegel W, Karger C, Jäkel O (2018) Medizinische Physik. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  7. Verhey L (1995) Immobilizing and positioning patients for radiotherapy. Radiat Oncol 5(2):100–114. https://doi.org/10.1054/SRAO00500100

    Article  CAS  Google Scholar 

  8. Schlegel W, Mahr A (Hrsg) (2007) Multimedia DVD radiotherapy. Springer, Berlin, Heidelberg

    Google Scholar 

  9. Nguyen J, Chen C, Lee C, Yen C, Xu Z, Schlesinger D, Sheehan J (2014) Multisession gamma knife radiosurgery: a preliminary experience with a noninvasive, relocatable frame. World Neurosurg 82(6):1256–1263

    Article  PubMed  Google Scholar 

  10. I. V. I. T. Völp, “IT V Völp,” IT V Völp, [Online]. Available: http://it-v.net/produkte/wingstep/systeme/index.htm. [Zugriff am 22 Februar 2018]

  11. Thieke C, Malsch U, Schlegel W, Debus J, Huber P, Bendl R, Thilmann C (2006) Kilovoltage CT using a Linac-CT scanner combination. Br J Radiol. https://doi.org/10.1259/bjr/88849490

    Article  PubMed  Google Scholar 

  12. Becker-Schiebe M, Abaci A, Ahmad T, Hoffmann W (2016) Reducing radiaiton-associated toxicity using online image guidance (IGRT) in prostate cancer patients undergoing dose-escalated radiation therapy. Rep Pract Oncol Radiother 21:188–194

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bert C, Metheany K, Doppke K, Chen G (2005) A phantom evaluation of a stereo-vision surface imaging system for radiotherpy patient setup. Med Phys 9:2753–2762

    Article  Google Scholar 

  14. Schöffel P, Harms W, Sroka-Perez G, Schlegel W, Karger C (2007) Accuracy of a commercial optical 3D surface imaging sytem for realignment of patients for radiotherapy of the thorax. Phys Med Biol 52(13):3949–3963

    Article  PubMed  Google Scholar 

  15. Apicella G, Loi G, Torrente S, Crespi S, Beldi D, Brambilla M, Krengli M (2016) Three-dimensional surface imaging for detection of intra-fraction setup variations during radiotherapy of pelvic tumors. Radiol Med 121(10):805–810

    Article  PubMed  Google Scholar 

  16. Tanguturi S, Lyatskaya Y, Chen Y, Catalano P, Chen M, Yeo W, Marques A, Truong L, Yeh M, Orlina L, Wong J, Punglia R, Bellon J (2015) Prospective assessment of deep inspiration breath-hold using 3‑dimensional surface tracking for irradiation of left-sided breast cancer. Pract Radiat Oncol 5(6):358–365

    Article  PubMed  Google Scholar 

  17. Schweikard A, Shiomi H, Adler J (2004) Respiration tracking in radiosurgery. Med Phys 10(31):2738–2741

    Article  Google Scholar 

  18. Schlosser J, Salisbury K, Hristoy D (2010) Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery. Med Phys 37(12):6357

    Article  PubMed  Google Scholar 

  19. Kuban D, Dong L, Cheung R, Srom E, De Crevoisier R (2005) Ultrasound-based localization. Semin Radiat Oncol 15(3):180

    Article  PubMed  Google Scholar 

  20. Artigan X, Smitsmans M, Lebesque J, Jaffray D, Van Herk M, Bertelink H (2004) Online Ultrasound image guidance for radiohterapy of prostate cancer. Impact of image acquisition on prostate displacement. Int J Radiat Oncol Biol Phys 59(2):595

    Article  Google Scholar 

  21. Olsen J, Noel C, Baker K, Santanam L, Michalski J, Parikh P (2012) Practical method of adaptive radiotherapy for prostate cancer using real-time electromagnetic tracking. Int J Radiat Oncol Biol Phys 5(82):1903–1911

    Article  Google Scholar 

  22. Lagendijk JJW, Raaymakers BW, Raaijmakers AJE, Overweg J, Brown KJ, Kerkhof EM, van der Put RW, Hardermak B, van Vulpen M, van der Heide UA (2008) MRI/linac integration. Radioth Oncol 86:25–29

    Article  Google Scholar 

  23. Mutic S, Dempsey J (2014) The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol 24(3):196–199

    Article  PubMed  Google Scholar 

  24. Bostel T, Pfaffenberger A, Delorme S, Dreher C, Echner G, Haering P, Lang C, Splinter M, Laun F, Müller M, Jäkel O, Debus J, Huber P, Sterzing F, Nicolay N (2018) Prospective feasibility analysis of a novel off-line approach for MR-guided radiotherapy. Strahlenther Onkol. https://doi.org/10.1007/s00066-017-1258-y

    Article  PubMed  Google Scholar 

  25. Jaffray D, Carlone M, Milosevic M, Breen S, Stanescu T, Rink A, Alasti H, Simeonov A, Sweitzer M, Winter J (2014) A facility for magnetic resonacne-guided radiation therapy. Semin Radiat Oncol 24(3):193–195

    Article  PubMed  Google Scholar 

  26. Kerkmejer LGW, Fuller CD, Verkooijen HM, Verheij M, Choudhury A, Harrington KJ, Schultz C, Sahgal A, Frank SJ, Goldwein J, Brown KJ, Minsky BD, van Vulpen M (2016) The MRI-linear accelerator consortium: evidence-based clinical introduction of an innovation in radiation oncology connecting researchers, methodology, data collection, quality assurance, and technical development. Front Oncol 6:215

    Google Scholar 

  27. Wang J, Yung J, Kadbi M, Hwang K, Ding Y, Ibbott G (2018) Assessment of image quality and scatter and leakage radiation of an inegrated MR-LINAC system. Med Phys. https://doi.org/10.1002/mp.12767

    Article  PubMed Central  PubMed  Google Scholar 

  28. Menten M, Fast M, Nill S, Kamerling C, McDonald F, Oelfke U (2016) Lung stereotactic body radiotherapy with an MR-linac—quantifying th eimpact of the magnetic field and real-time tumor tracking. Radiother Oncol 119(3):461–466

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yan D, Vicini F, Wong J, Martinez A (1997) Adaptive radiation therapy. Phys Med Biol 42:123–132

    Article  PubMed  CAS  Google Scholar 

  30. Jensen AD, Grehn C, Nikoghosyan A, Thieke C, Krempien R, Hubert PE, Debus J, Münter MW (2009) Catch me if you can—the use of image guidance in the radiotherpay of an unusal case of esophageal cancer. Strahlenther Oncol 185(7):469. https://doi.org/10.1007/s00066-009-1935-6

    Article  Google Scholar 

  31. Schwartz DL, Garden AS, Shah SJ, Chronowski G, Sejpal S, Rosenthal DI, Chen Y, Zhang Y, Zhang L, Wong P‑F, Garcia JA, Ang KK, Dong L (2013) Adaptive radiotherapy for head and neck cancer—dosimetric results from a prospective clinical trial. Radiother Oncol 106:80–84

    Article  PubMed  Google Scholar 

  32. Raaymakers BW, Lagendijk JJW, Overweg J, Kok JGM, Raaijmakers AJE, Kerkhof EM, van der Put RW, Meijsing I, Crijns SPM, Benedosso F, van Vulpen M, de Graaff CHW, Allen J, Brown KJ (2009) Integrating a 1.5 T MRI scanner with a 6MV accelerator: proof of concept. Phys Med Biol 54(12):N229–N237

    Article  PubMed  CAS  Google Scholar 

  33. Vestergaard A, Muren LP, Sondergaard J, Elstrom UV, Hoyer M, Petersen JB (2013) Adaptive plan selection vs. re-optimisation in radiotherapy for bladder cancer: A dose accumulation comparison. Radiother Oncol 109(3):457–462

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schwahofer.

Ethics declarations

Interessenkonflikt

A. Schwahofer und O. Jäkel geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwahofer, A., Jäkel, O. Planungszielvolumen. Radiologe 58, 736–745 (2018). https://doi.org/10.1007/s00117-018-0419-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-018-0419-z

Schlüsselwörter

Keywords

Navigation