Skip to main content
Log in

Physikalische Wechselwirkungen in der MRT

Einige Daumenregeln zu ihrer Reduktion

Physical interactions in MRI

Some rules of thumb for their reduction

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die Magnetresonanztomographie ist eines der leistungsfähigsten und zugleich schonendsten klinischen bildgebenden Verfahren der heutigen Zeit. Allerdings bergen ihre enorme physikalische Komplexität, aber auch einfache Unaufmerksamkeiten („Projektileffekt“) ein signifikantes Risikopotenzial in sich und stellen hohe Anforderungen an die MR-Bediener, um einen sicheren Betrieb zu gewährleisten. Ein solides Wissen um die potenziellen MR-Wechselwirkungen ist die Grundlage für einen sicheren und für alle Seiten gewinnbringenden Betrieb.

Der erste Teil der Arbeit behandelt die 3 zentralen Quellen für physikalische Wechselwirkungen in der Magnetresonanztomographie (statisches Magnetfeld, geschaltete Gradienten- und HF-Felder). Es werden für jede Feldart die Auswirkungen auf den Menschen, Wechselwirkungen mit magnetischen und elektrisch leitenden Objekten/Implantaten und relevante Sicherheitsstandards besprochen. Daran angeschlossen ist jeweils ein Abschnitt mit einfachen „Daumenregeln“, um potenziell unerwünschte physikalische MR-Wechselwirkungen zu minimieren.

Abstract

Magnetic resonance imaging (MRI) is one of the most powerful and at the same time gentlest clinical imaging techniques at the present time; however, the enormous physical complexity as well as simple inattentiveness (projectile effect) implicate a significant risk potential and place high demands on the MR operator to ensure a safe workflow. A sound knowledge of the potential MR interactions is the foundation for a safe and profitable operation for all parties.

The first part of this article deals with the three most important sources of physical interaction, i.e. static magnetic field, gradient and high-frequency (HF) fields. The paper discusses the differences between each type of field with respect to the impact on human beings, the interactions with magnetic and electrically conducting objects/implants and the relevant safety standards. Each section is followed by simple rules of thumb to minimize potentially unwanted physical MRI interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Armenean C, Perrin E, Armenean M et al (2004) RF-induced temperature elevation along metallic wires in clinical magnetic resonance imaging: influence of diameter and length. Magn Reson Med 52(5):1200–1206

    Article  PubMed  Google Scholar 

  2. Bhave G, Lewis JB, Chang SS (2008) Association of gadolinium based magnetic resonance imaging contrast agents and nephrogenic systemic fibrosis. J Urol 180(3):830–835 (discussion 835)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bourland JD, Nyenhuis JA, Schaefer DJ (1999) Physiologic effects of intense MR imaging gradient fields. Neuroimaging Clin North Am 9(2):363–377

    CAS  Google Scholar 

  4. Expert Panel on MR Safety, Kanal E, Barkovich AJ et al (2013) ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging 37(3):501–530

    Article  Google Scholar 

  5. Foster JR, Hall DA, Summerfield AQ et al (2000) Sound-level measurements and calculations of safe noise dosage during EPI at 3 T. J Magn Reson Imaging 12(1):157–163

    Article  CAS  PubMed  Google Scholar 

  6. Glover PM (2009) Interaction of MRI field gradients with the human body. Phys Med Biol 54(21):R99–R115

    Article  CAS  PubMed  Google Scholar 

  7. Glover PM, Cavin I, Qian W et al (2007) Magnetic-field-induced vertigo: a theoretical and experimental investigation. Bioelectromagnetics 28(5):349–361

    Article  CAS  PubMed  Google Scholar 

  8. Ham CL, Engels JM, Wiel GT van de et al (1997) Peripheral nerve stimulation during MRI: effects of high gradient amplitudes and switching rates. J Magn Reson Imaging 7(5):933–937

    Article  CAS  PubMed  Google Scholar 

  9. Hartwig V, Giovannetti G, Vanello N et al (2009) Biological effects and safety in magnetic resonance imaging: a review. Int J Environ Res Public Health 6(6):1778–1798

    Article  PubMed Central  PubMed  Google Scholar 

  10. Heinrich A, Szostek A, Nees F et al (2011) Effects of static magnetic fields on cognition, vital signs, and sensory perception: a meta-analysis. J Magn Reson Imaging 34(4):758–763

    Article  PubMed  Google Scholar 

  11. International Commission on Non-Ionizing Radiation Protection (2014) Guidelines for limiting exposure to electric fields induced by movement of the human body in a static magnetic field and by time-varying magnetic fields below 1 Hz. Health Phys 106(3):418–425

    Google Scholar 

  12. International Commission on Non-Ionizing Radiation Protection (2004) Medical magnetic resonance (MR) procedures: protection of patients. International Commission on Non-Ionizing Radiation Protection. Health Phys 87(2):197–216

    Article  Google Scholar 

  13. International Electrotechnical Commision (IEC) (2015) IEC 60601-2-33/AMD 2:2010 Amendment 2 – Medical electrical equipment – Part 2–33 (ed.3): particular requirements for the safety of magnetic resonance equipment for medical diagnosis

  14. International Electrotechnical Commision (IEC) (2014) IEC 62570 Standard practice for marking medical devices and other items for safety in the magnetic resonance environment. Geneva

  15. International Electrotechnical Commision (IEC) (2010) IEC 60601-2-33 (ed.3) Medical electrical equipment – Part 2–33 (ed.3): particular requirements for the safety of magnetic resonance equipment for medical diagnosis. Geneva

  16. International Organisation of Standardisation (ISO) (2012) ISO/TS 10974:2012(E) ISO/TS 10974 Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device. Geneva

  17. Ito Y, Omoto Y, Habe K et al (2007) Magnetic resonance (MR) imaging-induced deep second-degree burns of lower extremities by conducting loop. J Eur Acad Dermatol Venereol 21(8):1140–1141

    Article  CAS  PubMed  Google Scholar 

  18. Kitajima K, Maeda T, Watanabe S et al (2012) Recent topics related to nephrogenic systemic fibrosis associated with gadolinium-based contrast agents. Int J Urol 19(9):806–811

    Article  PubMed  Google Scholar 

  19. Klucznik RP, Carrier DA, Pyka R et al (1993) Placement of a ferromagnetic intracerebral aneurysm clip in a magnetic field with a fatal outcome. Radiology 187(3):855–856

    Article  CAS  PubMed  Google Scholar 

  20. Langman DA, Goldberg IB, Finn JP et al (2011) Pacemaker lead tip heating in abandoned and pacemaker-attached leads at 1.5 Tesla MRI. J Magn Reson Imaging 33(2):426–431

    Article  PubMed  Google Scholar 

  21. Mattei E, Gentili G, Censi F et al (2015) Impact of capped and uncapped abandoned leads on the heating of an MR-conditional pacemaker implant. Magn Reson Med 73:390–400

    Article  Google Scholar 

  22. Robbie DW (2012) Occupational exposure in MRI. Br J Radiol 85(1012):293–312

    Article  Google Scholar 

  23. Michaely HJ, Thomsen HS, Reiser MF et al (2007) Nephrogenic systemic fibrosis (NSF) – implications for radiology. Radiologe 47(9):785–793

    Article  CAS  PubMed  Google Scholar 

  24. Nitz WR, Brinker G, Diehl D et al (2005) Specific absorption rate as a poor indicator of magnetic resonance-related implant heating. Invest Radiol 40(12):773–776

    Article  PubMed  Google Scholar 

  25. Normenausschuss Radiologie (NAR) im DIN (2014) DIN 6876 DIN 6876 Betrieb von medizinischen Magnetresonanzsystemen. Berlin. http://www.beuth.de/de/norm/din-6876/197576544

  26. Robitaille P, Berliner L (2006) Ultra high field magnetic resonance imaging. Springer, Berlin Heidelberg New York

  27. Schaap K, Christopher-de Vries Y, Mason CK et al (2014) Occupational exposure of healthcare and research staff to static magnetic stray fields from 1.5–7 Tesla MRI scanners is associated with reporting of transient symptoms. Occup Environ Med 71(6):423–429

    Article  PubMed Central  PubMed  Google Scholar 

  28. Schaefer DJ, Bourland JD, Nyenhuis JA (2000) Review of patient safety in time-varying gradient fields. J Magn Reson Imaging 12(1):20–29

    Article  CAS  PubMed  Google Scholar 

  29. Schenck JF (2000) Safety of strong, static magnetic fields. J Magn Reson Imaging 12(1):2–19

    Article  CAS  PubMed  Google Scholar 

  30. Siemens AG (2010) Betreiberhandbuch Magnetom Skyra. München

  31. Sobol WT (2012) Recent advances in MRI technology: implications for image quality and patient safety. Saudi J Ophthalmol 26(4):393–399

    Article  PubMed Central  PubMed  Google Scholar 

  32. Stenschke J, Li D, Thomann M et al (2007) A numerical investigation of RF heating effects on implants during MRI compared to experimental measurements. Proc Physics 114:53–59

    Google Scholar 

  33. Sundgren PC, Leander P (2011) Is administration of gadolinium-based contrast media to pregnant women and small children justified? J Magn Reson Imaging 34(4):750–757

    Article  PubMed  Google Scholar 

  34. U.S. Food and Drug Administration (FDA) (2005) FDA public health notification: MRI-caused injuries in patients with implanted neurological stimulators. http://www.fda.gov/medicaldevices/safety/alertsandnotices/publichealthnotifications/ucm062125.htm. Zugegriffen: 17. Feb. 2015

  35. U.S. Food and Drug Administration (FDA) (1992) FDA safety alert: mri related death of patient with aneurysm clip. http://www.fda.gov/medicaldevices/safety/alertsandnotices/publichealthnotifications/ucm242613.htm. Zugegriffen: 17. Feb. 2015

  36. U.S. Food and Drug Administration (FDA) (2015) MAUDE – manufacturer and user facility device experience. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/Search.cfm. Zugegriffen: 11. Feb. 2015

  37. Valiron O, Peris L, Rikken G et al (2005) Cellular disorders induced by high magnetic fields. J Magn Reson Imaging 22(3):334–340

    Article  PubMed  Google Scholar 

  38. Vocht de F, Stevens T, Wendel-de-Joode B van et al (2006) Acute neurobehavioral effects of exposure to static magnetic fields: analyses of exposure-response relations. J Magn Reson Imaging 23(3):291–297

    Article  PubMed  Google Scholar 

  39. Vogt FM, Ladd ME, Hunold P et al (2004) Increased time rate of change of gradient fields: effect on peripheral nerve stimulation at clinical MR imaging. Radiology 233(2):548–554

    Article  PubMed  Google Scholar 

  40. Warmuth J (2011) Das stärkste Magnetfeld der Welt. http://www.weltderphysik.de/gebiet/technik/news/das-staerkste-magnetfeld-der-welt/. Zugegriffen: 01. Feb. 2015

  41. Matthey S, Gardner JM, Schaefers G (2013) Clarification of MR interactions in practice for implants and devices used in MRI – rules of thumb (or when to expect less MR interaction). Proceedings of the 22nd Annual Meeting of the Section for Magnetic Resonance Technologists, Salt Lake City

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Mühlenweg und G. Schaefers weisen auf folgende Beziehung hin: Sie sind Mitglieder im Normenausschuss Radiologie (NAR) in Arbeitsgemeinschaft mit der Deutschen Röntgengesellschaft (DRG). S. Trattnig gibt an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Danksagung

Sehr herzlich danken möchten die Autoren den Herren Georg Frese und Hans Engels sowie Frau Nicoline Schubert für ihre kritische Durchsicht der Arbeit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mühlenweg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mühlenweg, M., Schaefers, G. & Trattnig, S. Physikalische Wechselwirkungen in der MRT. Radiologe 55, 638–648 (2015). https://doi.org/10.1007/s00117-015-2812-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-015-2812-1

Schlüsselwörter

Keywords

Navigation