Skip to main content
Log in

Funktionelle und molekulare Bildgebung bei Brusttumoren

Functional and molecular imaging of breast tumors

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die molekulare Bildgebung beschäftigt sich mit der Darstellung, Beschreibung und Quantifizierung biologischer und physiologischer Prozesse auf zellulärer und molekularer Ebene. In der letzten Zeit beginnt sich die molekulare Bildgebung auch in der Mammadiagnostik zu etablieren. Im Rahmen dieses Übersichtsartikels soll ein Überblick über die sich noch in der Entwicklung befindlichen präklinischen sowie die bereits etablierten klinischen Verfahren gegeben werden. Die molekulare nuklearmedizinische Brustbildgebung (brustspezifische Gammakamerabildgebung [BSGI] und Positronenemissionsmammographie [PEM]) und die dabei zur Anwendung kommenden spezifischen Radiotracer und Kontrastmittel werden besprochen und die Möglichkeiten der MRT in der funktionellen (DWI) und metabolischen (MRSI) Bildgebung von Brustläsionen und die kombinierte Anwendung der nuklearmedizinischen MR-tomographischen Bildgebung (PET/MRT) erläutert. Weiter soll ein Überblick über die präklinische Verfahren, die optische und photoakustische Bildgebung und ihre möglichen klinischen Anwendungen gegeben werden.

Abstract

Molecular imaging is concerned with the presentation, description and quantification of biological and physiological processes at the cellular and molecular level. Most recently molecular imaging has started to become established in breast diagnostics. This review article will give an overview of procedures which are either in the preclinical development stage or which have already become clinically established. Molecular nuclear medicine breast imaging (breast-specific gamma imaging [BSGI] and positron emission mammography [PEM]) together with specific radiotracers and contrast media will be discussed. The possibilities for magnetic resonance imaging in functional (DWI) and metabolic (MRSI) imaging of breast lesions and the combined application of nuclear medicine and magnetic resonance imaging (PET/MRI) will be explained. Furthermore, an overview on the preclinical procedure and the possible clinical applications of optical and photoacoustic imaging will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219(2):316–333

    CAS  PubMed  Google Scholar 

  2. Kolb TM, Lichy J, Newhouse JH (1998) Occult cancer in women with dense breasts: detection with screening US – diagnostic yield and tumor characteristics. Radiology 207(1):191–199

    CAS  PubMed  Google Scholar 

  3. Aktolun C, Bayhan H, Kir M (1992) Clinical experience with Tc-99m MIBI imaging in patients with malignant tumors. Preliminary results and comparison with Tl-201. Clin Nucl Med 17(3):171–176

    Article  CAS  PubMed  Google Scholar 

  4. Khalkhali I, Mena I, Jouanne E et al (1994) Prone scintimammography in patients with suspicion of carcinoma of the breast. J Am Coll Surg 178(5):491–497

    CAS  PubMed  Google Scholar 

  5. Becherer A, Helbich T, Staudenherz A et al (1997) The diagnostic value of planar and SPET scintimammography in different age groups. Nucl Med Commun 18(8):710–718

    Article  CAS  PubMed  Google Scholar 

  6. Helbich TH, Becherer A, Trattnig S et al (1997) Differentiation of benign and malignant breast lesions: MR imaging versus Tc-99m sestamibi scintimammography. Radiology 202(2):421–429

    CAS  PubMed  Google Scholar 

  7. Taillefer R (2005) Clinical applications of 99m-Tc-sestamibi scintimammography. Semin Nucl Med 35(2):100–115

    Article  PubMed  Google Scholar 

  8. Arslan N, Ozturk E, Ilgan S et al (1999) 99Tcm-MIBI scintimammography in the evaluation of breast lesions and axillary involvement: a comparison with mammography and histopathological diagnosis. Nucl Med Commun 20(4):317–325

    Article  CAS  PubMed  Google Scholar 

  9. Maffioli L, Agresti R, Chiti A et al (1996) Prone scintimammography in patients with non-palpable breast lesions. Anticancer Res 16(3A):1269–1273

    CAS  PubMed  Google Scholar 

  10. Scopinaro F, Ierardi M, Porfiri LM et al (1997) 99mTc-MIBI prone scintimammography in patients with high and intermediate risk mammography. Anticancer Res 17(3B):1635–1638

    CAS  PubMed  Google Scholar 

  11. Scopinaro F, Schillaci O, Ussof W et al (1997) A three center study on the diagnostic accuracy of 99mTc-MIBI scintimammography. Anticancer Res 17(3B):1631–1634

    CAS  PubMed  Google Scholar 

  12. Tolmos J, Cutrone JA, Wang B et al (1998) Scintimammographic analysis of nonpalpable breast lesions previously identified by conventional mammography. J Natl Cancer Inst 90(11):846–849

    Article  CAS  PubMed  Google Scholar 

  13. Palmedo H, Grunwald F, Bender H et al (1996) Scintimammography with technetium-99m methoxyisobutylisonitrile: comparison with mammography and magnetic resonance imaging. Eur J Nucl Med 23(8):940–946

    Article  CAS  PubMed  Google Scholar 

  14. Brem RF, Schoonjans JM, Kieper DA et al (2002) High-resolution scintimammography: a pilot study. J Nucl Med 43(7):909–915

    PubMed  Google Scholar 

  15. Brem RF, Rapelyea JA, Zisman G et al (2005) Occult breast cancer: scintimammography with high-resolution breast-specific gamma camera in women at high risk for breast cancer. Radiology 237(1):274–280

    Article  PubMed  Google Scholar 

  16. Coover LR, Caravaglia G, Kuhn P (2004) Scintimammography with dedicated breast camera detects and localizes occult carcinoma. J Nucl Med 45(4):553–558

    PubMed  Google Scholar 

  17. Rhodes DJ, O’Connor MK, Phillips SW et al (2005) Molecular breast imaging: a new technique using technetium Tc 99m scintimammography to detect small tumors of the breast. Mayo Clin Proc 80(1):24–30

    Article  PubMed  Google Scholar 

  18. Brem RF, Floerke AC, Rapelyea JA et al (2008) Breast-specific gamma imaging as an adjunct imaging modality for the diagnosis of breast cancer. Radiology 247(3):651–657

    Article  PubMed  Google Scholar 

  19. Brem RF, Shahan C, Rapleyea JA et al (2010) Detection of occult foci of breast cancer using breast-specific gamma imaging in women with one mammographic or clinically suspicious breast lesion. Acad Radiol 17(6):735–743

    Article  PubMed  Google Scholar 

  20. Lumachi F, Ferretti G, Povolato M et al (2001) Accuracy of technetium-99m sestamibi scintimammography and X-ray mammography in premenopausal women with suspected breast cancer. Eur J Nucl Med 28(12):1776–1780

    Article  CAS  PubMed  Google Scholar 

  21. Khalkhali I, Baum JK, Villanueva-Meyer J et al (2002) (99m)Tc sestamibi breast imaging for the examination of patients with dense and fatty breasts: multicenter study. Radiology 222(1):149–155

    Article  PubMed  Google Scholar 

  22. Cutrone JA, Khalkhali I, Yospur LS et al (1999) Tc-99m sestamibi scintimammography for the evaluation of breast masses in patients with radiographically dense breasts. Breast J 5(6):383–388

    Article  PubMed  Google Scholar 

  23. Babuccu O, Peksoy I, Kargi E et al (2003) The value of scintimammography in reduction mammaplasties: a preliminary study. Aesthetic Plast Surg 27(4):296–300

    Article  PubMed  Google Scholar 

  24. Fletcher JW, Djulbegovic B, Soares HP et al (2008) Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 49(3):480–508

    Article  PubMed  Google Scholar 

  25. Buck A, Schirrmeister H, Kuhn T et al (2002) FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. Eur J Nucl Med Mol Imaging 29(10):1317–1323

    Article  CAS  PubMed  Google Scholar 

  26. Bos R, Der Hoeven JJ van, Der Wall E van et al (2002) Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20(2):379–387

    Article  CAS  PubMed  Google Scholar 

  27. Crippa F, Seregni E, Agresti R et al (1998) Association between [18F]fluorodeoxyglucose uptake and postoperative histopathology, hormone receptor status, thymidine labelling index and p53 in primary breast cancer: a preliminary observation. Eur J Nucl Med 25(10):1429–1434

    Article  CAS  PubMed  Google Scholar 

  28. Bakheet SM, Powe J, Kandil A et al (2000) F-18 FDG uptake in breast infection and inflammation. Clin Nucl Med 25(2):100–103

    Article  CAS  PubMed  Google Scholar 

  29. Hicks RJ, Binns D, Stabin MG (2001) Pattern of uptake and excretion of (18)F-FDG in the lactating breast. J Nucl Med 42(8):1238–1242

    CAS  PubMed  Google Scholar 

  30. Berg WA, Weinberg IN, Narayanan D et al (2006) High-resolution fluorodeoxyglucose positron emission tomography with compression („positron emission mammography“) is highly accurate in depicting primary breast cancer. Breast J 12(4):309–323

    Article  PubMed  Google Scholar 

  31. Frangioni JV (2008) New technologies for human cancer imaging. J Clin Oncol 26(24):4012–4021

    Article  PubMed  Google Scholar 

  32. Rosen EL, Eubank WB, Mankoff DA (2007) FDG PET, PET/CT, and breast cancer imaging. Radiographics 27 (suppl 1):S215–S229

    Article  PubMed  Google Scholar 

  33. Hodgson NC, Gulenchyn KY (2008) Is there a role for positron emission tomography in breast cancer staging? J Clin Oncol 26(5):712–720

    Article  PubMed  Google Scholar 

  34. Cachin F, Prince HM, Hogg A et al (2006) Powerful prognostic stratification by [18F]fluorodeoxyglucose positron emission tomography in patients with metastatic breast cancer treated with high-dose chemotherapy. J Clin Oncol 24(19):3026–3031

    Article  PubMed  Google Scholar 

  35. Emmering J, Krak NC, Van der Hoeven JJ et al (2008) Preoperative [18F] FDG-PET after chemotherapy in locally advanced breast cancer: prognostic value as compared with histopathology. Ann Oncol 19(9):1573–1577

    Article  CAS  PubMed  Google Scholar 

  36. Been LB, Elsinga PH, Vries J de et al (2006) Positron emission tomography in patients with breast cancer using (18)F-3’-deoxy-3’-fluoro-l-thymidine ((18)F-FLT)-a pilot study. Eur J Surg Oncol 32(1):39–43

    Article  CAS  PubMed  Google Scholar 

  37. Kenny L, Coombes RC, Vigushin DM et al (2007) Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3’-deoxy-3’-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 34(9):1339–1347

    Article  PubMed  Google Scholar 

  38. Blankenberg F, Ohtsuki K, Strauss HW (1999) Dying a thousand deaths. Radionuclide imaging of apoptosis. Q J Nucl Med 43(2):170–176

    CAS  PubMed  Google Scholar 

  39. Wiele C van de, Lahorte C, Vermeersch H et al (2003) Quantitative tumor apoptosis imaging using technetium-99m-HYNIC annexin V single photon emission computed tomography. J Clin Oncol 21(18):3483–3487

    Article  PubMed  Google Scholar 

  40. Schoenberger J, Bauer J, Moosbauer J et al (2008) Innovative strategies in in vivo apoptosis imaging. Curr Med Chem 15(2):187–194

    Article  CAS  PubMed  Google Scholar 

  41. Dehdashti F, Picus J, Michalski JM et al (2005) Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging 32(3):344–350

    Article  PubMed  Google Scholar 

  42. McGuire AH, Dehdashti F, Siegel BA et al (1991) Positron tomographic assessment of 16 alpha-[18F] fluoro-17 beta-estradiol uptake in metastatic breast carcinoma. J Nucl Med 32(8):1526–1531

    CAS  PubMed  Google Scholar 

  43. Smith-Jones PM, Solit DB, Akhurst T et al (2004) Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 22(6):701–706

    Article  CAS  PubMed  Google Scholar 

  44. Smith-Jones PM, Solit D, Afroze F et al (2006) Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET. J Nucl Med 47(5):793–796

    CAS  PubMed  Google Scholar 

  45. Rajendran JG, Mankoff DA, O’Sullivan F et al (2004) Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 10(7):2245–2252

    Article  CAS  PubMed  Google Scholar 

  46. Helbich TH (2000) Contrast-enhanced magnetic resonance imaging of the breast. Eur J Radiol 34(3):208–219

    Article  CAS  PubMed  Google Scholar 

  47. Warner E, Plewes DB, Hill KA et al (2004) Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA 292(11):1317–1325

    Article  CAS  PubMed  Google Scholar 

  48. Riedl CC, Ponhold L, Flory D et al (2007) Magnetic resonance imaging of the breast improves detection of invasive cancer, preinvasive cancer, and premalignant lesions during surveillance of women at high risk for breast cancer. Clin Cancer Res 13(20):6144–6152

    Article  PubMed  Google Scholar 

  49. Kuhl C (2007) The current status of breast MR imaging – Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 244(2):356–378

    Article  PubMed  Google Scholar 

  50. Kuhl CK (2007) Current status of breast MR imaging. Part 2. Clinical applications. Radiology 244(3):672–691

    Article  PubMed  Google Scholar 

  51. Kinkel K, Helbich TH, Esserman LJ et al (2000) Dynamic high-spatial-resolution MR imaging of suspicious breast lesions: diagnostic criteria and interobserver variability. AJR Am J Roentgenol 175(1):35–43

    CAS  PubMed  Google Scholar 

  52. Liberman L, Morris EA, Lee MJ et al (2002) Breast lesions detected on MR imaging: features and positive predictive value. AJR Am J Roentgenol 179(1):171–178

    PubMed  Google Scholar 

  53. Kuhl CK, Schild HH, Morakkabati N (2005) Dynamic bilateral contrast-enhanced MR imaging of the breast: trade-off between spatial and temporal resolution. Radiology 236(3):789–800

    Article  PubMed  Google Scholar 

  54. Goto M, Ito H, Akazawa K et al (2007) Diagnosis of breast tumors by contrast-enhanced MR imaging: comparison between the diagnostic performance of dynamic enhancement patterns and morphologic features. J Magn Reson Imaging 25(1):104–112

    Article  PubMed  Google Scholar 

  55. Kuhl CK, Jost P, Morakkabati N et al (2006) Contrast-enhanced MR imaging of the breast at 3.0 and 1.5 T in the same patients: initial experience. Radiology 239(3):666–676

    Article  PubMed  Google Scholar 

  56. Kuhl CK (2007) Breast MR imaging at 3T. Magn Reson Imaging Clin North Am 15(3):315–320, vi

    Article  Google Scholar 

  57. Noebauer-Huhmann IM, Pinker K, Barth M et al (2006) Contrast-enhanced, high-resolution, susceptibility-weighted magnetic resonance imaging of the brain: dose-dependent optimization at 3 tesla and 1.5 tesla in healthy volunteers. Invest Radiol 41(3):249–255

    Article  PubMed  Google Scholar 

  58. Pinker K, Ba-Ssalamah A, Wolfsberger S et al (2005) The value of high-field MRI (3T) in the assessment of sellar lesions. Eur J Radiol 54(3):327–334

    Article  CAS  PubMed  Google Scholar 

  59. Ba-Ssalamah A, Nobauer-Huhmann IM, Pinker K et al (2003) Effect of contrast dose and field strength in the magnetic resonance detection of brain metastases. Invest Radiol 38(7):415–422

    Article  PubMed  Google Scholar 

  60. Kuhl CK, Kooijman H, Gieseke J, Schild HH (2007) Effect of B-1 inhomogeneity on breast imaging at 3.0 T. Radiology. 244(3):929–930

    Google Scholar 

  61. Rakow-Penner R, Daniel B, Yu H et al (2006) Relaxation times of breast tissue at 1.5T and 3T measured using IDEAL. J Magn Reson Imaging 23(1):87–91

    Article  PubMed  Google Scholar 

  62. Turnbull LW (2008) Dynamic contrast-enhanced MRI in the diagnosis and management of breast cancer. Wiley, New York

  63. Bartella L, Huang W (2007) Proton (1H) MR spectroscopy of the breast. Radiographics 27 (suppl 1):S241–S252

    Article  PubMed  Google Scholar 

  64. Bartella L, Morris EA (2006) Advances in breast imaging: magnetic resonance imaging. Curr Oncol Rep 8(1):7–13

    Article  PubMed  Google Scholar 

  65. Bartella L, Morris EA, Dershaw DD et al (2006) Proton MR spectroscopy with choline peak as malignancy marker improves positive predictive value for breast cancer diagnosis: preliminary study. Radiology 239(3):686–692

    Article  PubMed  Google Scholar 

  66. Gruber SBW, Chmelik M, Pinker K et al (2008) High spatial resolution three-dimensional spectroscopic imaging in breast cancer in 12–15 minutes as part of a multimodal concept at 3 tesla. RSNA 2008. Chicago, USA

  67. Gruber SPK, Bogner W, Grabner G et al (2008) Three dimensional spectroscopic imaging in breast cancer at 3Tesla, a pilot study. ISMRM 2008. Toronto, Canada

  68. Bartella L, Smith CS, Dershaw DD, Liberman L (2007) Imaging breast cancer. Radiol Clin North Am 45(1):45–67

    Article  PubMed  Google Scholar 

  69. Meisamy S, Bolan PJ, Baker EH et al (2004) Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo (1)H MR spectroscopy – a pilot study at 4 T. Radiology 233(2):424–431

    Article  PubMed  Google Scholar 

  70. Meisamy S, Bolan PJ, Baker EH et al (2005) Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: preliminary results of observer performance study at 4.0 T. Radiology 236(2):465–475

    Article  PubMed  Google Scholar 

  71. Roebuck JR, Cecil KM, Schnall MD, Lenkinski RE (1998) Human breast lesions: characterization with proton MR spectroscopy. Radiology 209(1):269–275

    CAS  PubMed  Google Scholar 

  72. Kvistad KA, Bakken IJ, Gribbestad IS et al (1999) Characterization of neoplastic and normal human breast tissues with in vivo (1)H MR spectroscopy. J Magn Reson Imaging 10(2):159–164

    Article  CAS  PubMed  Google Scholar 

  73. Cecil KM, Schnall MD, Siegelman ES, Lenkinski RE (2001) The evaluation of human breast lesions with magnetic resonance imaging and proton magnetic resonance spectroscopy. Breast Cancer Res Treat 68(1):45–54

    Article  CAS  PubMed  Google Scholar 

  74. Yeung DK, Cheung HS, Tse GM (2001) Human breast lesions: characterization with contrast-enhanced in vivo proton MR spectroscopy – initial results. Radiology 220(1):40–46

    CAS  PubMed  Google Scholar 

  75. Jagannathan NR, Kumar M, Seenu V et al (2001) Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. Br J Cancer 84(8):1016–1022

    Article  CAS  PubMed  Google Scholar 

  76. Tse GM, Cheung HS, Pang LM et al (2003) Characterization of lesions of the breast with proton MR spectroscopy: comparison of carcinomas, benign lesions, and phyllodes tumors. AJR Am J Roentgenol 181(5):1267–1272

    PubMed  Google Scholar 

  77. Bogner W, Gruber S, Pinker K et al (2009) Diffusion-weighted MR for differentiation of breast lesions at 3.0 T: how does selection of diffusion protocols affect diagnosis? Radiology 253:341–351

    Article  PubMed  Google Scholar 

  78. Eis M, Els T, Hoehn-Berlage M, Hossmann KA (1994) Quantitative diffusion MR imaging of cerebral tumor and edema. Acta Neurochir (Wien) (suppl) 60:344–346

    Google Scholar 

  79. Guo Y, Cai YQ, Cai ZL et al (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16(2):172–178

    Article  PubMed  Google Scholar 

  80. Bogner WPK, Gruber S, Grabner G et al (2008) High-field diffusion-weighted imaging for improved differentiation of benign and malignant breast lesions. RSNA 2008. Chicago, USA

  81. Conturo TE, McKinstry RC, Aronovitz JA, Neil JJ (1995) Diffusion MRI: precision, accuracy and flow effects. NMR Biomed 8(7–8):307–332

    Google Scholar 

  82. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188(6):1622–1635

    Article  PubMed  Google Scholar 

  83. Thoeny HC, De Keyzer F (2007) Extracranial applications of diffusion-weighted magnetic resonance imaging. Eur Radiol 17(6):1385–1393

    Article  PubMed  Google Scholar 

  84. Ichikawa T, Erturk SM, Motosugi U et al (2006) High-B-value diffusion-weighted MRI in colorectal cancer. AJR Am J Roentgenol 187(1):181–184

    Article  PubMed  Google Scholar 

  85. Tamai K, Koyama T, Saga T et al (2008) The utility of diffusion-weighted MR imaging for differentiating uterine sarcomas from benign leiomyomas. Eur Radiol 18(4):723–730

    Article  PubMed  Google Scholar 

  86. Tamai K, Koyama T, Saga T et al (2007) Diffusion-weighted MR imaging of uterine endometrial cancer. J Magn Reson Imaging 26(3):682–687

    Article  PubMed  Google Scholar 

  87. Kartalis N, Lindholm TL, Aspelin P et al (2009) Diffusion-weighted magnetic resonance imaging of pancreas tumours. Eur Radiol 19:1981–1990

    Article  PubMed  Google Scholar 

  88. Naganawa S, Sato C, Nakamura T et al (2005) Diffusion-weighted images of the liver: comparison of tumor detection before and after contrast enhancement with superparamagnetic iron oxide. J Magn Reson Imaging 21(6):836–840

    Article  PubMed  Google Scholar 

  89. Sato C, Naganawa S, Nakamura T et al (2005) Differentiation of noncancerous tissue and cancer lesions by apparent diffusion coefficient values in transition and peripheral zones of the prostate. J Magn Reson Imaging 21(3):258–262

    Article  PubMed  Google Scholar 

  90. Marini C, Iacconi C, Giannelli M et al (2007) Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion. Eur Radiol 17(10):2646–2655

    Article  CAS  PubMed  Google Scholar 

  91. Guo Y, Cai YQ, Cai ZL et al (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16(2):172–178

    Article  PubMed  Google Scholar 

  92. Yankeelov TE, Lepage M, Chakravarthy A et al (2007) Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results. Magn Reson Imaging 25(1):1–13

    Article  PubMed  Google Scholar 

  93. Woodhams R, Matsunaga K, Iwabuchi K et al (2005) Diffusion-weighted imaging of malignant breast tumors – the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension. J Comput Assist Tomogr 29(5):644–649

    Article  PubMed  Google Scholar 

  94. Woodhams R, Matsunaga K, Kan S et al (2005) ADC mapping of benign and malignant breast tumors. J Magn Reson Med Sci 4(1):35–42

    Article  Google Scholar 

  95. Bogner WPK, Gruber S, Grabner G et al (2009) Diffusion-weighted MRI for differentiation of breast lesions at 3.0 tesla: how does selection of diffusion schemes affect diagnosis? Radiology, in press

  96. Antoch G, Saoudi N, Kuehl H et al (2004) Accuracy of whole-body dual-modality fluorine-18–2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 22(21):4357–4368

    Article  PubMed  Google Scholar 

  97. Bar-Shalom R, Yefremov N, Guralnik L et al (2003) Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med 44(8):1200–1209

    PubMed  Google Scholar 

  98. Tatsumi M, Cohade C, Mourtzikos KA et al (2006) Initial experience with FDG-PET/CT in the evaluation of breast cancer. Eur J Nucl Med Mol Imaging 33(3):254–262

    Article  PubMed  Google Scholar 

  99. Pichler BJ, Judenhofer MS, Catana C et al (2006) Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 47(4):639–647

    PubMed  Google Scholar 

  100. Wehrl HF, Judenhofer MS, Wiehr S, Pichler BJ (2009) Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 36 (suppl 1):S56–S68

    Article  PubMed  Google Scholar 

  101. Domingues RC, Carneiro MP, Lopes FC et al (2009) Whole-body MRI and FDG PET fused images for evaluation of patients with cancer. AJR Am J Roentgenol 192(4):1012–1020

    Article  PubMed  Google Scholar 

  102. Moy L, Ponzo F, Noz ME et al (2007) Improving specificity of breast MRI using prone PET and fused MRI and PET 3D volume datasets. J Nucl Med 48(4):528–537

    Article  PubMed  Google Scholar 

  103. Goerres GW, Michel SC, Fehr MK et al (2003) Follow-up of women with breast cancer: comparison between MRI and FDG PET. Eur Radiol 13(7):1635–1644

    Article  PubMed  Google Scholar 

  104. Antoch G, Bockisch A (2009) Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging 36 (suppl 1):S113–S120

    Article  PubMed  Google Scholar 

  105. Kelley MC, Hansen N, McMasters KM (2004) Lymphatic mapping and sentinel lymphadenectomy for breast cancer. Am J Surg 188(1):49–61

    Article  PubMed  Google Scholar 

  106. Veronesi U, Galimberti V, Mariani L et al (2005) Sentinel node biopsy in breast cancer: early results in 953 patients with negative sentinel node biopsy and no axillary dissection. Eur J Cancer 41(2):231–237

    Article  PubMed  Google Scholar 

  107. Woo Y, Adusumilli PS, Fong Y (2006) Advances in oncolytic viral therapy. Curr Opin Investig Drugs 7(6):549–559

    CAS  PubMed  Google Scholar 

  108. Eisenberg DP, Adusumilli PS, Hendershott KJ et al (2006) Real-time intraoperative detection of breast cancer axillary lymph node metastases using a green fluorescent protein-expressing herpes virus. Ann Surg 243(6):824–830; discussion 30–32

    Article  PubMed  Google Scholar 

  109. Brader P, Kelly K, Gang S et al (2009) Imaging of lymph node micrometastases using an oncolytic herpes virus and [F]FEAU PET. PLoS One 4(3):e4789

    Article  PubMed  CAS  Google Scholar 

  110. Rice A, Quinn CM (2002) Angiogenesis, thrombospondin, and ductal carcinoma in situ of the breast. J Clin Pathol 55(8):569–574

    Article  CAS  PubMed  Google Scholar 

  111. Vaupel P, Harrison L (2004) Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9 (suppl 5):4–9

    Article  PubMed  Google Scholar 

  112. Floery D, Helbich TH, Riedl CC et al (2005) Characterization of benign and malignant breast lesions with computed tomography laser mammography (CTLM): initial experience. Invest Radiol 40(6):328–335

    Article  PubMed  Google Scholar 

  113. Sampath L, Kwon S, Ke S et al (2007) Dual-labeled trastuzumab-based imaging agent for the detection of human epidermal growth factor receptor 2 overexpression in breast cancer. J Nucl Med 48(9):1501–1510

    Article  CAS  PubMed  Google Scholar 

  114. Hilger I, Leistner Y, Berndt A et al (2004) Near-infrared fluorescence imaging of HER-2 protein over-expression in tumour cells. Eur Radiol 14(6):1124–1129

    Article  PubMed  Google Scholar 

  115. Ke S, Wen X, Gurfinkel M et al (2003) Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res 63(22):7870–7875

    CAS  PubMed  Google Scholar 

  116. Montet X, Ntziachristos V, Grimm J, Weissleder R (2005) Tomographic fluorescence mapping of tumor targets. Cancer Res 65(14):6330–6336

    Article  CAS  PubMed  Google Scholar 

  117. Wang LV (1998) Optical tomography for biomedical applications. IEEE Eng Med Biol Mag 17(2):45–46

    Article  CAS  PubMed  Google Scholar 

  118. Bremer C, Ntziachristos V, Weitkamp B et al (2005) Optical imaging of spontaneous breast tumors using protease sensing ‚smart‘ optical probes. Invest Radiol 40(6):321–327

    Article  CAS  PubMed  Google Scholar 

  119. Bremer C, Tung CH, Bogdanov A Jr, Weissleder R (2002) Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes. Radiology 222(3):814–818

    Article  PubMed  Google Scholar 

  120. Mahmood U, Tung CH, Bogdanov A Jr, Weissleder R (1999) Near-infrared optical imaging of protease activity for tumor detection. Radiology 213(3):866–870

    CAS  PubMed  Google Scholar 

  121. Intes X, Ripoll J, Chen Y et al (2003) In vivo continuous-wave optical breast imaging enhanced with indocyanine green. Med Phys 30(6):1039–1047

    Article  PubMed  Google Scholar 

  122. Ntziachristos V, Yodh AG, Schnall M, Chance B (2000) Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci U S A 97(6):2767–2772

    Article  CAS  PubMed  Google Scholar 

  123. Jose J, Manohar S, Kolkman RG et al (2009) Imaging of tumor vasculature using Twente photoacoustic systems. J Biophotonics 2(12):701–717

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.H. Helbich.

Additional information

Diese Arbeit wurde unterstützt durch den ÖGS-Forschungsförderungspreis 2009 sowie durch das Jubiläumsfondsprojekt Nr. 13652 der Österreichischen Nationalbank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinker, K., Brader, P., Karanikas, G. et al. Funktionelle und molekulare Bildgebung bei Brusttumoren. Radiologe 50, 1030–1038 (2010). https://doi.org/10.1007/s00117-010-2014-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-010-2014-9

Schlüsselwörter

Keywords

Navigation