Skip to main content
Log in

Physikalische Aspekte der verschiedenen Tomosynthesesysteme

Physical aspects of different tomosynthesis systems

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die digitale Brusttomosynthese (DBT) ist eine auf der digitalen Mammographie aufbauende neuartige Bildverarbeitungstechnologie. Dabei werden durch bogenförmige Bewegung der Röntgenröhre mehrere Aufnahmen der komprimierten Brust angefertigt, um daraus Schichtbilder der Brust zu rekonstruieren. Es wird eine Gesamtdosis ähnlich der Dosis einer herkömmlichen digitalen Mammographie angestrebt. Einer der wesentlichen Vorteile von DBT besteht darin, dass Läsionen nicht mehr durch überlagernde Gewebeteile verdeckt werden und dadurch die Befundungsqualität, insbesondere bei dichten Brüsten, gesteigert werden kann.

Die jetzigen DBT-Implementierungen verschiedener Hersteller unterscheiden sich in mehrfacher Hinsicht. Es werden die Vor- und Nachteile der verschiedenen DBT-Charakteristiken wie Scanwinkel, Anzahl der Projektionen, Scanzeit, Pixelgröße, Rekonstruktionsmethoden und Art der Röhrenbewegung gegenübergestellt sowie die Anzahl der empfohlenen Aufnahmeebenen und der damit verbundene Dosisbedarf verglichen.

Abstract

Digital breast tomosynthesis (DBT) is a new image processing technique based on digital mammography technology. Image slices of the stationary compressed breast are reconstructed from multiple images taken at different angles of the X-ray tube at the same time. The main goal is to achieve a similar radiation dose exposure as common encountered in traditional digital mammography. One of the key advantages of DBT is that lesions are less likely to be hidden amongst normal tissues as they are in traditional digital mammography. This way the quality of diagnosis can be improved, especially for dense breasts.

Current DBT implementations from several manufacturers differ in certain features such as scanning angle, number of projections, scanning time, pixel size, reconstruction methods and type of tube movement. A comparison and description of these different characteristics as well as a discussion on the proposed number of imaging planes and related radiation dose requirements are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Baldwin P et al (2009) Digital breast tomosynthesis. Radiol Technol 81:57M–74M

    PubMed  Google Scholar 

  2. Bissonnette M et al (2005) Digital breast tomosynthesis using an amorphous selenium flat panel detector. Medical imaging: physics of medical imaging. Proc SPIE, vol 5745

    Google Scholar 

  3. Blendl C et al (2005) Anforderungen und Prüfverfahren für digitale Mammographie-Einrichtungen – PAS 1054. Beuth, Berlin

  4. Bushberg JT et al (2002) The essential physics of medical imaging. Lippincot Williams & Wilkins, Baltimore

  5. Chan HP (2009) Computer-aided diagnosis in breast tomosynthesis and chest CT. Nippon Hoshasen Gijutsu Gakkai Zasshi 65(7):968–976

    PubMed  Google Scholar 

  6. European Congress for Radiology, Proceedings 2010. http://www.myesr.org

  7. Gennaro G et al (2009) Digital breast tomosynthesis versus digital mammography: a clinical study performance study. Eur Radiol 20:1545–1553

    Article  PubMed  Google Scholar 

  8. Hu YH et al (2010) Image artifact in digital breast tomosynthesis and its dependence on system and reconstruction parameters. LNCS 5116:628–634

    Google Scholar 

  9. Holland R et al (1982) So-called interval cancers of the breast. Cancer 49:2527–2533

    Article  CAS  PubMed  Google Scholar 

  10. Jacobs J et al (2010) Constancy checking of digital breast tomosynthesis systems. LNCS 6136, 10th International Workshop, IWDM

  11. Marshall NW (2006) A comparison between objective and subjective image quality measurements for a full field digital mammography system. Phys Med Biol 51:2241–2263

    Google Scholar 

  12. Marshall NW (2007) Early experience in the use of quantitative image quality measurements for the quality assurance of full field digital mammography X-ray systems. Phys Med Biol 52:5545–5568

    Article  CAS  PubMed  Google Scholar 

  13. Mc Cauley TG et al (2000) Three dimensional breast image reconstruction from a limited number of views. SPIE Proc 3977:384–395

    Article  Google Scholar 

  14. Mertelmeier T, Ludwig J, Zhao B, Zhao W (2008) Optimization of tomosynthesis acquisition parameters: angular range and number of projections. Comp Sci 5116:220–227

    Google Scholar 

  15. Miller ER et al (1971) An infinite number of laminagrams from a finite number of radiographs. Radiology 98:249–255

    CAS  PubMed  Google Scholar 

  16. Niklason LT et al (1997) Digital tomosynthesis in breast imaging. Radiology 205(2):399–406

    CAS  PubMed  Google Scholar 

  17. Pisano ED (2008) Diagnostic accuracy of digital versus film mammography; exploratory analysis of selected population subgroups in DMIST. Radiology 246:376–383

    Article  PubMed  Google Scholar 

  18. Poplack SP et al (2007) Digital breast tomosynthesis: initial experience in 98 women with abnormal digital screening mammography. AJR 189:616–623

    Article  PubMed  Google Scholar 

  19. QS-Richtlinie (2010) Richtlinie zur Durchführung der Qualitätssicherung bei Röntgeneinrichtungen zur Untersuchung oder Behandlung von Menschen nach §§16 und 17 der Röntgenverordnung – Qualitätssicherungs-Richtlinie (QS-RL) – vom 20.11.2003 (GMBl 2004, S 731), zuletzt geändert durch Rundschreiben vom 15. 7. 2010

  20. Reiser I et al (2007) Comparison of reconstruction algorithms for digital breast tomosynthesis; Proceedings fully 3D meeting and HPIR workshop, Lindau, Germany, pp 155–158

  21. Ren B et al (2010) A new generation FFDM/tomosynthesis fusion system with selenium detector. Medical Imaging, Proc SPIE 7622, B76220B, pp 1–11

  22. Schulz-Wendtland R et al (2008) Current situation and future perspectives of digital mammography. Radiologe 48(4):324–334 (article in German)

    Article  CAS  PubMed  Google Scholar 

  23. Schulz-Wendtland R et al (2009) Digital mammography: an update. Eur J Radiol 72(2):258–265. Epub 2009 Jul 9

    Article  CAS  PubMed  Google Scholar 

  24. Skaane P et al (2007) Randomized trial of screen film versus full-field digital mammography with soft-copy reading in population-based screening program: follow-up and final results of Oslo II Study. Radiology 244:708–717

    Article  PubMed  Google Scholar 

  25. Smith A (2008) Fundamentals of breast tomosynthesis, white paper 00007. http://www.hologic.com

  26. Suryananarayanan S et al (2001) Evaluation of linear and nonlinear tomosynthesic reconstruction methods in digital mammography. Acad Radiol 8(3):219–224

    Article  Google Scholar 

  27. Thijssen M et al (2010) European Protocol for Quality Control (EPQC – Version 4, 2006) plus EUREF Supplement for FFDM. http://www.euref.org

  28. Varjonen M (2006) Three dimensional (3D) digital breast tomosynthesis (DBT) in the early diagnosis and detection of breast cancer. Tampere University of Technology, Julkaisu, Publication 594

  29. Young K (2010) Tomosynthesis in breast imaging: tomorrow’s mammography? ECR ken.young@nhs.net

  30. Zhao B, Zhou J, Hu YH et al (2009) Experimental validation of a three-dimensional linear system model for breast tomosynthesis. Med Phys 36(1):240–251

    Article  PubMed  Google Scholar 

Download references

Danksagung

Die Autoren bedanken sich bei Gerhard Brunst, Mats Danielsson, Helmut Hartig, Bob Martins, Thomas Mertelmeier, Jonas Ren, Andy Smith und Angelo Taibi für deren Diskussionsbeiträge.

Interessenkonflikt

Die korrespondierenden Autoren geben an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Semturs or T.H. Helbich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semturs, F., Sturm, E., Gruber, R. et al. Physikalische Aspekte der verschiedenen Tomosynthesesysteme. Radiologe 50, 982–990 (2010). https://doi.org/10.1007/s00117-010-2012-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-010-2012-y

Schlüsselwörter

Keywords

Navigation