Skip to main content
Log in

Quantitativer Ultraschall

Quantitative Ultrasound

  • Osteoporose
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Verfahren des quantitativen Ultraschalls (QUS) sind geeignet, Aussagen über die Bruchempfindlichkeit des Skeletts zu treffen. So existieren umfangreiche Studienergebnisse über die Eignung von QUS für die Abschätzung des osteoporotischen Frakturrisikos. Allerdings muss dabei der Vielfalt unterschiedlicher Technologien, Geräte und Messvariablen sowie dem unterschiedlichen Validierungsgrad einzelner Geräte Rechnung getragen werden.

Mit Methoden zur Simulation der Ausbreitung von Ultraschallwellen konnte die komplexe Wechselwirkung zwischen Ultraschall und Knochen besser verstanden und die Schallausbreitung visualisiert werden. Vor einem weiten klinischen Einsatz ist noch zu klären, ob auch Patienten mit niedrigen QUS-Werten von einer Therapie profitieren, so wie es für die 2-Energien-Röntgenabsorptiometrie (DXA) gezeigt werden konnte. Weiterhin ist die Einführung von Qualitätssicherungsmaßnahmen notwendig. Auch sollte der Anwender die Grenzen der Verfahren kennen und die Ergebnisse korrekt interpretieren können. Richtig eingesetzt, könnten QUS-Verfahren aufgrund niedrigerer Kosten und des Fehlens ionisierender Strahlung eine bedeutende Rolle im Osteoporosemanagement spielen.

Abstract

Methods of quantitative ultrasound (QUS) can be used to obtain knowledge about bone fragility. Comprehensive study results exist showing the power of QUS for the estimation of osteoporotic fracture risk. Nevertheless, the variety of technologies, devices, and variables as well as different degrees of validation of the single devices have to be taken into account.

Using methods to simulate ultrasound propagation, the complex interaction between ultrasound and bone could be understood and the propagation could be visualized. Preceding widespread clinical use, it has to be clarified if patients with low QUS values will profit from therapy, as it has been shown for DXA. Moreover, the introduction of quality assurance measures is essential. The user should know the limitations of the methods and be able to interpret the results correctly. Applied in an adequate manner QUS methods could then, due to lower costs and absence of ionizing radiation, become important players in osteoporosis management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4a-d
Abb. 5
Abb. 6
Abb. 7a-d
Abb. 8
Abb. 9a-d

Literatur

  1. Barkmann R, Glüer CC (1999) Error sources in quantitative ultrasound measurements In: Njeh C (ed) Quantitative ultrasound. Dunitz, London

    Google Scholar 

  2. Barkmann R, Heller M, Glüer CC (1999) Methoden der in vivo-Ultraschallmesstechnik am Skelett: Grundlagen und technische Realisierung. J Miner Stoffwechs 6(4): 22–27

    Google Scholar 

  3. Barkmann R, Lüsse S, Stampa B et al. (2000) Assessment of the geometry of human finger phalanges using quantitative ultrasound in vivo. Osteoporos Int 11(9): 745–755

    Article  PubMed  Google Scholar 

  4. Barkmann R, Kantorovich E, Singal C et al. (2000) A new method for quantitative ultrasound measurements at multiple skeletal sites: first results of precision and fracture discrimination. J Clin Densitom 3(1): 1–7

    Article  PubMed  Google Scholar 

  5. Barkmann R, Rohrschneider W, Vierling M et al. (2002) German pediatric reference data for quantitative transverse transmission ultrasound of finger phalanges. Osteoporos Int 13(1): 55–61

    Article  PubMed  Google Scholar 

  6. Baroncelli GI, Federico G, Bertelloni S et al. (2001) Bone quality assessment by quantitative ultrasound of proximal phalanxes of the hand in healthy subjects aged 3–21 years. Pediatr Res 49(5): 713–718

    PubMed  Google Scholar 

  7. Bauer DC, Glüer CC, Cauley JA et al. (1997) Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 157(6): 629–634

    Article  PubMed  Google Scholar 

  8. Chappard C, Laugier P, Fournier B et al. (1997) Assessment of the relationship between broadband ultrasound attenuation and bone mineral density at the calcaneus using BUA imaging and DXA. Osteoporos Int 7(4): 316–322

    Article  PubMed  Google Scholar 

  9. Drozdzowska B, Pluskiewicz W, Halaba Z et al. (2005) Quantitative ultrasound at the hand phalanges in 2850 females aged 7 to 77 yr: a cross-sectional study. J Clin Densitom 8(2): 216–221

    Article  PubMed  Google Scholar 

  10. Evans JA, Tavakoli MB (1990) Ultrasonic attenuation and velocity in bone. Phys Med Biol 35: 1387–1396

    Article  PubMed  Google Scholar 

  11. Glüer CC (1997) Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group. J Bone Miner Res 12(8): 1280–1288

    Article  PubMed  Google Scholar 

  12. Glüer CC, Eastell R, Reid DM et al. (2004) Association of quantitative ultrasound parameters and bone density with osteoporotic vertebral deformities in a population based sample: the OPUS Study. J Bone Miner Res 16: S196

    Google Scholar 

  13. Gonnelli S, Cepollaro C, Montagnani A et al. (2002) Heel ultrasonography in monitoring alendronate therapy: a four-year longitudinal study. Osteoporos Int 13(5): 415–421

    Article  PubMed  Google Scholar 

  14. Hans D, Dargent-Molina P, Schott AM et al. (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348(9026): 511–514

    Article  PubMed  Google Scholar 

  15. Hans D, Srivastav SK, Singal C et al. (1999) Does combining the results from multiple bone sites measured by a new quantitative ultrasound device improve discrimination of hip fracture? J Bone Miner Res 14(4): 644–651

    Article  PubMed  Google Scholar 

  16. Hans D, Schott AM, Duboeuf F et al. (2004) Does follow-up duration influence the ultrasound and DXA prediction of hip fracture? The EPIDOS prospective study. Bone 35(2): 357–363

    Article  PubMed  Google Scholar 

  17. Hartl F, Tyndall A, Kraenzlin M et al. (2002) Discriminatory ability of quantitative ultrasound parameters and bone mineral density in a population-based sample of postmenopausal women with vertebral fractures: results of the Basel Osteoporosis Study. J Bone Miner Res 17(2): 321–330

    Article  PubMed  Google Scholar 

  18. Hasegawa K, Turner CH, Recker RR et al. (1995) Elastic properties of osteoporotic bone measured by scanning acoustic microscopy. Bone 16(1): 85–90

    Article  PubMed  Google Scholar 

  19. Huang C, Ross PD, Yates AJ et al. (1998) Prediction of fracture risk by radiographic absorptiometry and quantitative ultrasound: a prospective study. Calcif Tissue Int 63(5): 380–384

    Article  PubMed  Google Scholar 

  20. Ingle BM, Machado AB, Pereda CA, Eastell R (2005) Monitoring alendronate and estradiol therapy with quantitative ultrasound and bone mineral density. J Clin Densitom 8(3): 278–286

    Article  PubMed  Google Scholar 

  21. Kanis JA, Johnell O, Oden A et al. (2005) Ten-year probabilities of clinical vertebral fractures according to phalangeal quantitative ultrasonography. Osteoporos Int 16(9): 1065–1070

    Article  PubMed  Google Scholar 

  22. Katz JL, Meunier A (1987) The elastic anysotropy of bone. J Biomechnics 20(11/12): 1063–1070

    Google Scholar 

  23. Knapp KM, Blake GM, Spector TD, Fogelman I (2001) Multisite quantitative ultrasound: precision, age- and menopause- related changes, fracture discrimination, and T-score equivalence with dual-energy X-ray absorptiometry. Osteoporos Int 12(6): 456–464

    Article  PubMed  Google Scholar 

  24. Krieg MA, Cornuz J, Ruffieux C et al. (2003) Comparison of three bone ultrasounds for the discrimination of subjects with and without osteoporotic fractures among 7562 elderly women. J Bone Miner Res 18(7): 1261–1266

    Article  PubMed  Google Scholar 

  25. Langton CM, Palmer SB, Porter RW (1984) The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med 13(2): 89–91

    PubMed  Google Scholar 

  26. Laugier P, Giat P, Berger G (1994) Broadband ultrasonic attenuation imaging: a new imaging technique of the os calcis. Calcif Tissue Int 54(2): 83–86

    Article  PubMed  Google Scholar 

  27. Mauloni M, Rovati LC, Cadossi R et al. (2000) Monitoring bone effect of transdermal hormone replacement therapy by ultrasound investigation at the phalanx: a four-year follow-up study. Menopause 7(6): 402–412

    Article  PubMed  Google Scholar 

  28. Mele R, Masci G, Ventura V et al. (1997) Three-year longitudinal study with quantitative ultrasound at the hand phalanx in a female population. Osteoporos Int 7(6): 550–557

    PubMed  Google Scholar 

  29. Moilanen P, Kilappa V, Nicholson PH et al. (2004) Thickness sensitivity of ultrasound velocity in long bone phantoms. Ultrasound Med Biol 30(11): 1517–1521

    Article  PubMed  Google Scholar 

  30. Nicholson PH, Bouxsein ML (2000) Quantitative ultrasound does not reflect mechanically induced damage in human cancellous bone. J Bone Miner Res 15(12): 2467–2472

    Article  PubMed  Google Scholar 

  31. Nicholson PH, Müller R, Cheng XG et al. (2001) Quantitative ultrasound and trabecular architecture in the human calcaneus. J Bone Miner Res 16(10): 1886–1892

    Article  PubMed  Google Scholar 

  32. Nicholson PH, Moilanen P, Karkkainen T et al. (2002) Guided ultrasonic waves in long bones: modelling, experiment and in vivo application. Physiol Meas 23(4): 755–768

    Article  PubMed  Google Scholar 

  33. Njeh CF, Hans D, Fuerst T et al. (1999) Quantitative ultrasound: assessment of osteoporosis and bone status. Dunitz, London

    Google Scholar 

  34. Njeh CF, Hans D, Wu C et al. (1999) An in vitro investigation of the dependence on sample thickness of the speed of sound along the specimen. Med Eng Phys 21(9): 651–659

    Article  PubMed  Google Scholar 

  35. Pande KC, Bernard J, McCloskey EV et al. (2000) Ultrasound velocity and dual-energy X-ray absorptiometry in normal and pagetic bone. Bone 26(5): 525–528

    Article  PubMed  Google Scholar 

  36. Prevrhal S, Fuerst T, Fan B et al. (2001) Quantitative ultrasound of the tibia depends on both cortical density and thickness. Osteoporos Int 12(1): 28–34

    Article  PubMed  Google Scholar 

  37. Raum K, Leguerney I, Chandelier F et al. (2005) Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. Ultrasound Med Biol 31(9): 1225–1235

    Article  PubMed  Google Scholar 

  38. Sakata S, Barkmann R, Lochmueller EM et al. (2004) Assessing bone status beyond BMD: evaluation of bone geometry and porosity by quantitative ultrasound of human finger phalanges. J Bone Miner Res 19(6): 924–930

    Article  PubMed  Google Scholar 

  39. Sievänen H, Cheng S, Ollikainen S, Uusi-Rasi K 2001 Ultrasound velocity and cortical bone characteristics in vivo. Osteoporos Int 12(5): 399–405

    Google Scholar 

  40. Tatarinov A, Sarvazyan N, Sarvazyan A (2005) Use of multiple acoustic wave modes for assessment of long bones: model study. Ultrasonics 43(8): 672–680

    Article  PubMed  Google Scholar 

  41. Van den Bergh JP, Noordam C, Ozyilmaz A et al. (2000) Calcaneal ultrasound imaging in healthy children and adolescents: relation of the ultrasound parameters BUA and SOS to age, body weight, height, foot dimensions and pubertal stage. Osteoporos Int 11(11): 967–976

    Article  PubMed  Google Scholar 

  42. Wüster C, Albanese C, De Aloysio D et al. (2000) Phalangeal osteosonogrammetry study: age-related changes, diagnostic sensitivity, and discrimination power. The Phalangeal Osteosonogrammetry Study Group. J Bone Miner Res 15(8): 1603–1614

    Article  PubMed  Google Scholar 

  43. Zadik Z, Price D, Diamond G (2003) Pediatric reference curves for multi-site quantitative ultrasound and its modulators. Osteoporos Int 14(10): 857–862

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Barkmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkmann, R., Glüer, CC. Quantitativer Ultraschall. Radiologe 46, 861–869 (2006). https://doi.org/10.1007/s00117-006-1394-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-006-1394-3

Schlüsselwörter

Keywords

Navigation