Skip to main content
Log in

Lumbale Bandscheibenendoprothesen: Indikationen, Biomechanik, Typen und radiologische Kriterien

Lumbar disc arthroplasty: indications, biomechanics, types, and radiological criteria

  • Prothesendiagnostik
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die lumbale Bandscheibenendoprothese (LBEP) wurde entwickelt, um ein schmerzhaftes lumbales Bewegungssegment unter Vermeidung der Nachteile einer Fusionsoperation zu behandeln. Erste klinische Ergebnisse der LBEP zeigen eine signifikante Reduktion der Rückenschmerzen und eine signifikante Verbesserung in den disability scores.

Die radiologische Diagnostik ist wichtiger Bestandteil der präoperativen Abklärung. Es sollten Nativaufnahmen der LWS mit Funktionsaufnahmen zur Beurteilung der noch erhaltenen Segmentbeweglichkeit und eine CT zum Nachweis bzw. Ausschluss von Spondylarthrosen, eines Morbus Baastrup und anderer möglicher Schmerzursachen angefertigt werden, außerdem ein MRT zum Nachweis des Wasserverlustes der Bandscheibe, Ausschluss größerer Prolabierungen oder zur Darstellung von Aktivierungszeichen.

Die postoperative radiologische Diagnostik sollte Nativaufnahmen in 2 Ebenen und im späteren Verlauf Funktionsaufnahmen beinhalten. Eine ideal eingesetzte LBEP sollte im a.p. Bild mittig zentriert und in der Seitaufnahme dorsal nahe der Wirbelkörperhinterkante abschließen. Bei Fehllage drohen segmentale Hyperlordose und ungleiche Belastung mit der Gefahr der Einsinterung und der Migration.

Abstract

Lumbar total disc replacement (TDR) was developed to treat a painful degenerative lumbar motion segment while avoiding the disadvantages of fusion surgery, such as adjacent segment instabilities. Early clinical results with TDR have shown a significant reduction in low back pain and a significant improvement in disability scores. When compared to fusion, the results with TDR tend to be superior in the short-term follow-up and initial rehabilitation is faster. The radiological assessment is an integral part of the preoperative work-up. Plain X-rays of the lumbar spine should be complemented by flexion – extension views in order to assess residual segmental mobility. Computed tomography is used to exclude osteoarthritis of the zygapophyseal joints, Baastrup’s disease (kissing spines) and other sources of low back pain. Magnetic resonance imaging is useful to exclude substantial disc protrusions; it allows for the detection of disc dehydration and bone marrow edema in the case of activated spondylochondrosis. If osteoporosis is suspected, an osteodensitometry of the lumbar spine should be performed. Postoperative plain X-rays should include antero-posterior and lateral views as well as flexion – extension views in the later postoperative course. Measurements should determine the disc space height in the lateral view, the segmental and total lumbar lordosis as well as the segmental mobility in the flexion – extension views. The ideal position of a TDR is exactly central in the ap-view and close to the dorsal border of the vertebral endplates in the lateral view. Malpositioning may cause segmental hyperlordosis and unbalanced loading of the endplates with the risk of implant subsidence and migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10a, b
Abb. 11a, b
Abb. 12a, b
Abb. 13
Abb. 14

Literatur

  1. Bertagnoli R, Yue JJ, Shah RV et al. (2005) The treatment of disabling multilevel lumbar discogenic low back pain with total disc arthroplasty utilizing the ProDisc prosthesis: a prospective study with 2-year minimum follow-up. Spine 30: 2192–2199

    Article  PubMed  Google Scholar 

  2. Blumenthal S, McAfee PC, Guyer RD et al. (2005) A prospective, randomized, multicenter Food and Drug Administration investigational device exemptions study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: part I: evaluation of clinical outcomes. Spine 30: 1565–1575; discussion E1387–1591

    Article  PubMed  Google Scholar 

  3. Brox JI, Sorensen R, Friis A et al. (2003) Randomized clinical trial of lumbar instrumented fusion and cognitive intervention and exercises in patients with chronic low back pain and disc degeneration. Spine 28: 1913–1921

    Article  PubMed  Google Scholar 

  4. Cakir B, Richter M, Kafer W et al. (2005) The impact of total lumbar disc replacement on segmental and total lumbar lordosis. Clin Biomech (Bristol, Avon) 20: 357–364

    Google Scholar 

  5. Cakir B, Richter M, Puhl W, Schmidt R (2005) Reliability of motion measurements after total disc replacement: the spike and the fin method. Eur Spine J (epub ahead of print)

    Google Scholar 

  6. Cohen SP, Larkin TM, Barna SA et al. (2005) Lumbar discography: a comprehensive review of outcome studies, diagnostic accuracy, and principles. Reg Anesth Pain Med 30: 163–183

    Article  PubMed  Google Scholar 

  7. Delamarter RB, Fribourg DM, Kanim LE, Bae H (2003) ProDisc artificial total lumbar disc replacement: introduction and early results from the United States clinical trial. Spine 28: S167–175

    Article  PubMed  Google Scholar 

  8. Deyo RA, Gray DT, Kreuter W et al. (2005) United States trends in lumbar fusion surgery for degenerative conditions. Spine 30: 1441–1445; discussion 1446–1447

    Article  PubMed  Google Scholar 

  9. Dooris AP, Goel VK, Grosland NM et al. (2001) Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Spine 26: E122–129

    Article  PubMed  Google Scholar 

  10. Fritzell P, Hagg O, Jonsson D, Nordwall A (2004) Cost-effectiveness of lumbar fusion and nonsurgical treatment for chronic low back pain in the Swedish Lumbar Spine Study: a multicenter, randomized, controlled trial from the Swedish Lumbar Spine Study Group. Spine 29: 421–434; discussion Z423

    Article  PubMed  Google Scholar 

  11. Gibson J, Waddell G, Gibson JA (2005) Surgery for degenerative lumbar spondylosis. Cochrane Database Syst Rev: CD001352

    Google Scholar 

  12. Guyer RD, Ohnmeiss DD (2003) Lumbar discography. Spine J 3: 11S–27S

    Article  PubMed  Google Scholar 

  13. Hopf C, Heeckt H, Beske C (2002) Disc replacement with the SB Charite endoposthesis – experience, preliminary results and comments after 35 prospectively performed operations. Z Orthop Ihre Grenzgeb 140: 485–491

    Article  PubMed  Google Scholar 

  14. Huang RC, Girardi FP, Cammisa Jr FP et al. (2003) Long-term flexion-extension range of motion of the prodisc total disc replacement. J Spinal Disord Tech 16: 435–440

    Article  PubMed  Google Scholar 

  15. Le Huec JC, Mathews H, Basso Y et al. (2005) Clinical results of Maverick lumbar total disc replacement: two-year prospective follow-up. Orthop Clin North Am 36: 315–322

    Article  PubMed  Google Scholar 

  16. Le Huec JC, Kiaer T, Friesem T, Mathews H et al. (2003) Shock absorption in lumbar disc prosthesis: a preliminary mechanical study. J Spinal Disord Tech 16: 346–351

    PubMed  Google Scholar 

  17. Lim MR, Girardi FP, Zhang K et al. (2005) Measurement of total disc replacement radiographic range of motion: a comparison of two techniques. J Spinal Disord Tech 18: 252–256

    PubMed  Google Scholar 

  18. Mathew P, Blackman M, Redla S, Hussein AA (2005) Bilateral pedicle fractures following anterior dislocation of the polyethylene inlay of a ProDisc artificial disc replacement: a case report of an unusual complication. Spine 30: E311–314

    Article  PubMed  Google Scholar 

  19. Mayer HM (2005) Degenerative disorders of the lumbar spine total disc replacement as an alternative to lumbar fusion?. Orthopade 34: 1007–1014, 1016–1020

    Article  PubMed  Google Scholar 

  20. Mayer HM, Wiechert K, Korge A, Qose I (2002) Minimally invasive total disc replacement: surgical technique and preliminary clinical results. Eur Spine J 11 [Suppl 2]: S124–130

  21. McAfee PC, Cunningham B, Holsapple G et al. (2005) A prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: part II: evaluation of radiographic outcomes and correlation of surgical technique accuracy with clinical outcomes. Spine 30: 1576–1583; discussion E1388–1590

    Article  PubMed  Google Scholar 

  22. Putzier M, Funk JF, Schneider SV et al. (2005) Charite total disc replacement-clinical and radiographical results after an average follow-up of 17 years. Eur Spine J (epub ahead of print)

  23. Shim CS, Lee S, Maeng DH, Lee SH (2005) Vertical split fracture of the vertebral body following total disc replacement using ProDisc: report of two cases. J Spinal Disord Tech 18: 465–469

    Article  PubMed  Google Scholar 

  24. Singh K, Vaccaro AR, Albert TJ (2004) Assessing the potential impact of total disc arthroplasty on surgeon practice patterns in North America. Spine J 4: 195S–201S

    Article  PubMed  Google Scholar 

  25. Tropiano P, Huang RC, Girardi FP, Marnay T (2003) Lumbar disc replacement: preliminary results with ProDisc II after a minimum follow-up period of 1 year. J Spinal Disord Tech 16: 362–368

    PubMed  Google Scholar 

  26. Trouillier H, Kern P, Refior HJ, Muller-Gerbl M (2005) A prospective morphological study of facet joint integrity following intervertebral disc replacement with the CHARITE (trade mark) artificial disc. Eur Spine J (epub ahead of print)

  27. Van Ooij A, Oner FC, Verbout AJ (2003) Complications of artificial disc replacement: a report of 27 patients with the SB Charite disc. J Spinal Disord Tech 16: 369–383

    PubMed  Google Scholar 

  28. Zigler JE (2003) Clinical results with ProDisc: European experience and US investigation device exemption study. Spine 28: S163–166

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Die Autoren versichern, dass keine finanziellen oder sonstigen Verbindungen mit den im Artikel genannten Firmen bestehen, welche geeignet wären, die Darstellung des Themas zu beeinflussen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Birkenmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baur-Melnyk, A., Birkenmaier, C. & Reiser, M.F. Lumbale Bandscheibenendoprothesen: Indikationen, Biomechanik, Typen und radiologische Kriterien. Radiologe 46, 768–778 (2006). https://doi.org/10.1007/s00117-006-1356-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-006-1356-9

Schlüsselwörter

Keywords

Navigation