Skip to main content
Log in

T1-Maps und O2-verstärkte MRT der erkrankten Lunge

Emphysem, Fibrose, Mukoviszidose

T1 maps and O2-enhanced MRT of the diseased lung

Emphysema, fibrosis, mucoviscidosis

  • MRT der Lunge
  • Published:
Der Radiologe Aims and scope Submit manuscript

Schlussfolgerung

T1-Mapping und sauerstoffverstärkte MRT sind viel versprechende neue Methoden in der funktionellen Lungenbildgebung, die komplementär zur morphologischen Bildgebung wertvolle Zusatzinformationen erbringen.

Die primäre Funktion der Lunge ist der Gasaustausch, der Transport von Sauerstoff spielt in der Physiologie und Pathophysiologie der Lunge eine wesentliche Rolle. Molekularer Sauerstoff besitzt schwache paramagnetische Eigenschaften. Daher führt eine Erhöhung seiner Konzentration zur Verkürzung der T1-Zeit und somit zur Signalanhebung auf T1-gewichteten Bildern. Die Darstellung der T1-Zeiten mit Hilfe von Parameter-Maps erlaubt tiefere Einblicke in die Relaxationsmechanismen der Lunge. Aus während der Inhalation verschiedener O2-Konzentrationen erstellten T1-Maps können Sauerstofftransferfunktionen (OTF) als Maß des lokalen Sauerstofftransports erstellt werden. Mit T1-gewichteten Single-shot-TSE-Sequenzen können auch Effekte, die nach Inhalation von reinem Sauerstoff auftreten, erfasst werden. Der Durchschnitt der T1-Werte in Inspiration war 1199±117 ms, in Exspiration 1333±167 ms. T1-Maps von Patienten mit Emphysem und Lungenfibrose zeigten ein grundsätzlich unterschiedliches Verhalten: Die sauerstoffverstärkte MRT ergab eine reduzierte Diffusionskapazität/einen eingeschränkten Sauerstofftransport bei Patienten mit Emphysem und Mukoviszidose.

Abstract

Purpose

Gas exchange is the primary function of the lung and the transport of oxygen plays a key role in pulmonary physiology and pathophysiology.

Materials and Methods

Molecular oxygen is weakly paramagnetic, so that an increase in oxygen concentration results in shortening T1 relaxation time and thus increasing signal intensity in T1 weighted images. The calculation of parameter maps may allow deeper insights into relaxation mechanisms. T1 maps based on a snapshot FLASH sequence obtained during the inhalation of various oxygen concentrations allow the creation of an oxygen transfer function, providing a measurement of local oxygen transfer. T1 weighted single shot TSE sequences demonstrate the signal changing effects during inhalation of pure oxygen.

Results

The average of the mean T1 values over the entire lung during inspiration was 1,199±117 ms, the average of these values during expiration was 1,333±167 ms. T1 maps of patients with emphysema and lung fibrosis show fundamentally different values and respiratory dependence compared to healthy individuals. Oxygen enhanced MR has the potential to assess reduced diffusion capacity and decreased transport of oxygen in patients with emphysema and cystic fibrosis.

Discussion

Results published in the literature indicate that T1 mapping and oxygen enhanced MR are promising new methods in functional imaging of the lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Bergin CJ, Glover GH, Pauly JM (1991) Lung parenchyma: magnetic susceptibility in MR imaging. Radiology 180: 845–848

    PubMed  Google Scholar 

  2. Bottomley PA, Hardy CJ, Argersinger RE et al. (1987) A review of 1H nuclear magnetic resonance relaxation in pathology: are T1 and T2 diagnostic? Med Phys 14: 1–37

    Article  PubMed  Google Scholar 

  3. Brooks RA, Di Chiro G (1987) Magnetic resonance imaging of stationary blood: a review. Med Phys 14: 903–913

    Article  PubMed  Google Scholar 

  4. Chen Q, Jakob PM, Griswold MA et al. (1998) Oxygen enhanced MR ventilation imaging of the lung. Magma 7: 153–161

    PubMed  Google Scholar 

  5. Cutillo AG, Morris AH, Ailion DC et al. (1988) Quantitative assessment of pulmonary edema by nuclear magnetic resonance methods. J Thorac Imaging 3: 51–58

    Google Scholar 

  6. Edelman RR, Hatabu H, Tadamura E et al. (1996) Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med 2: 1236–1239

    Article  PubMed  Google Scholar 

  7. Haase A, Matthaei D, Bartkowski R et al. (1989) Inversion recovery snapshot FLASH MR imaging. J Comput Assist Tomogr 13: 1036–1040

    PubMed  Google Scholar 

  8. Hatabu H, Alsop DC, Listerud J et al. (1999) T2* and proton density measurement of normal human lung parenchyma using submillisecond echo time gradient echo magnetic resonance imaging. Eur J Radiol 29: 245–252

    Article  PubMed  Google Scholar 

  9. Hatabu H, Gaa J, Tadamura E et al. (1999) MR imaging of pulmonary parenchyma with a half-Fourier single-shot turbo spin-echo (HASTE) sequence. Eur J Radiol 29: 152–159

    Article  PubMed  Google Scholar 

  10. Hayes CE, Case TA, Ailion DC et al. (1982) Lung water quantitation by nuclear magnetic resonance imaging. Science 216: 1313–1315

    PubMed  Google Scholar 

  11. Jakob PM, Hillenbrand CM, Wang T et al. (2001) Rapid quantitative lung (1)H T(1) mapping. J Magn Reson Imaging 14: 795–799

    Article  PubMed  Google Scholar 

  12. Jakob PM, Wang T, Schultz G et al. (2004) Assessment of human pulmonary function using oxygen-enhanced T(1) imaging in patients with cystic fibrosis. Magn Reson Med 51: 1009–1016

    Article  PubMed  Google Scholar 

  13. Johnston PW, MacLennan FM, Simpson JG et al. (1985) Nuclear magnetic resonance imaging of pulmonary infarction and oedema in excised cadaver lungs. Magn Reson Imaging 3: 157–161

    Article  PubMed  Google Scholar 

  14. Kveder M, Zupancic I, Lahajnar G et al. (1988) Water proton NMR relaxation mechanisms in lung tissue. Magn Reson Med 7: 432–441

    PubMed  Google Scholar 

  15. Lodato RF (1990) Oxygen toxicity. Crit Care Clin 6: 749–765

    PubMed  Google Scholar 

  16. Loffler R, Muller CJ, Peller M et al. (2000) Optimization and evaluation of the signal intensity change in multisection oxygen-enhanced MR lung imaging. Magn Reson Med 43: 860–866

    Article  PubMed  Google Scholar 

  17. Madani A, Keyzer C, Gevenois PA (2001) Quantitative computed tomography assessment of lung structure and function in pulmonary emphysema. Eur Respir J 18: 720–730

    Article  PubMed  Google Scholar 

  18. Müller CJ, Schwaiblmair M, Scheidler J et al. (2002) Pulmonary diffusing capacity: assessment with oxygen-enhanced lung MR imaging preliminary findings. Radiology 222: 499–506

    PubMed  Google Scholar 

  19. Ohno Y, Chen Q, Hatabu H (2001) Oxygen-enhanced magnetic resonance ventilation imaging of lung. Eur J Radiol 37: 164–171

    Article  PubMed  Google Scholar 

  20. Ohno Y, Hatabu H, Takenaka D et al. (2001) Oxygen-enhanced MR ventilation imaging of the lung: preliminary clinical experience in 25 subjects. AJR Am J Roentgenol 177: 185–194

    PubMed  Google Scholar 

  21. Ohno Y, Hatabu H, Takenaka D et al. (2002) Dynamic oxygen-enhanced MRI reflects diffusing capacity of the lung. Magn Reson Med 47: 1139–1144

    Article  PubMed  Google Scholar 

  22. Pierce JA, Hocott JB, Ebert RV (1961) The collagen and elastin content of the lung in emphysema. Ann Intern Med 55: 210–222

    PubMed  Google Scholar 

  23. Scholz TD, Fleagle SR, Burns TL et al. (1989) Tissue determinants of nuclear magnetic resonance relaxation times. Effect of water and collagen content in muscle and tendon. Invest Radiol 24: 893–898

    PubMed  Google Scholar 

  24. Snider G, Kleinermann J, Thurlbeck W (1985) The definition of emphysema. Report of a National Heart, Lung, and Blood Institute, Division of Lung Diseases workshop. Am Rev Respir Dis 132: 182–185

    PubMed  Google Scholar 

  25. Stadler A, Jakob PM, Griswold M et al. (2005) T1 mapping of the entire lung parenchyma: influence of the respiratory phase in healthy individuals. J Magn Reson Imaging 21: 759–764

    Article  PubMed  Google Scholar 

  26. Stadler A, Stiebellehner L, Jakob PM et al. (2005) T1 mapping of the entire lung in patients with emphysema and fibrosis compared to normal individuals. RSNA 2005, Book of Abstracts. RSNA, Oak Brook, p 242

  27. Stock KW, Chen Q, Hatabu H et al. (1999) Magnetic resonance T2* measurements of the normal human lung in vivo with ultra-short echo times. Magn Reson Imaging 17: 997–1000

    Article  PubMed  Google Scholar 

  28. Tadamura E, Hatabu H, Li W et al. (1997) Effect of oxygen inhalation on relaxation times in various tissues. J Magn Reson Imaging 7: 220–225

    Google Scholar 

  29. Taylor CR, Sostman HD, Gore JC et al. (1987) Proton relaxation times in bleomycin-induced lung injury. Invest Radiol 22: 621–626

    PubMed  Google Scholar 

  30. Vinitski S, Pearson MG, Karlik SJ et al. (1986) Differentiation of parenchymal lung disorders with in vitro proton nuclear magnetic resonance. Magn Reson Med 3: 120–125

    PubMed  Google Scholar 

  31. Vinitski S, Steiner RM, Wexler HR et al. (1988) Assessment of lung water by magnetic resonance in three types of pulmonary edema. Heart Vessels 4: 88–93

    Article  PubMed  Google Scholar 

  32. Young IR, Clarke GJ, Bailes DR et al. (1981) Enhancement of relaxation rate with paramagnetic contrast agents in NMR imaging. J Comput Tomogr 5: 543–547

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Stadler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadler, A., Stiebellehner, L., Jakob, P.M. et al. T1-Maps und O2-verstärkte MRT der erkrankten Lunge. Radiologe 46, 282–289 (2006). https://doi.org/10.1007/s00117-006-1346-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-006-1346-y

Schlüsselwörter

Keywords

Navigation