Skip to main content
Log in

Magnetresonanzspektroskopie bei Schizophrenie

Möglichkeiten und Grenzen

Magnetic resonance spectroscopy in schizophrenia

Possibilities and limitations

  • Funktionelle Bildgebung in der Psychiatrie
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die Magnetresonanzspektroskopie (MRS) stellt ein nichtinvasives Verfahren dar, mit dem in vivo biochemische Veränderungen spezifischer Hirnregionen bei verschiedenen psychiatrischen Erkrankungen untersucht werden können. Dabei werden insbesondere die Protonenmagnetresonanzspektroskopie (1H-MRS) sowie die Phosphormagnetresonanzspektroskopie (31P-MRS) verwendet. In der vorliegenden Übersichtsarbeit werden die methodischen Grundlagen erläutert sowie die Befundlage bei der Schizophrenie referiert. Für die Darstellung der Studien zur 1H-MRS bei schizophrenen Patienten im Vergleich zu einer Kontrollgruppe wurde eine systematische Literaturrecherche durchgeführt. Die insgesamt inkonsistenten Ergebnisse der einzelnen Studien können u. a. auf unterschiedliche Patientenpopulationen, verschiedene Untersuchungstechniken und eine unterschiedliche Selektion der interessierenden Hirnregionen zurückgeführt werden. Zusammenfassend ergeben sich die deutlichsten Hinweise bei schizophrenen Patienten im dorsolateralen präfrontalen Kortex sowie in temporalen Regionen für eine Erhöhung der PDE- sowie eine Reduktion der PME-Konzentration als Ausdruck eines erhöhten Umbaus der membranständigen Phosphoplipide (31P-MRS) und für eine Verminderung der N-Acetyl-Aspartat- (NAA-)Konzentration bzw. des NAA/Cholin-Verhältnisses als Ausdruck einer neuronalen Schädigung (1H-MRS). Damit wird die aus anderen Untersuchungstechniken (z. B. strukturelle MR-Hirnmorphometrie, funktionelle MRT, Neuropsychologie) abgeleitete Hypothese einer fronto-temporo-thalamischen Netzwerkstörung bei Schizophrenie weiter gestützt. Durch die Kombination der MRS mit den genannten Verfahren in Verlaufsuntersuchungen kann es gelingen, spezifischere Einflussfaktoren bei der Entstehung und im Verlauf der Schizophrenie abzugrenzen.

Abstract

Magnetic resonance spectroscopy is a noninvasive investigative technique for in vivo detection of biochemical changes in neuropsychiatric disorders for which especially proton (1H-MRS) and phosphorus (31P-MRS) magnetic resonance spectroscopy have been used. In this review we explain the principles of MRS and summarize the studies in schizophrenia. A systematic literature review was carried out for 1H-MRS studies investigating schizophrenic patients compared to controls. The inconsistent results in the cited studies may be due to different study population, specific neuroimaging technique, and selected brain regions. Frequent findings are decreased PME and increased PDE concentrations (31P-MRS) linked to altered metabolism of membrane phospholipids and decreased N-acetylaspartate (NAA) or NAA/choline ratio (1H-MRS) linked to neuronal damage in frontal (DLPFC) or temporal regions in patients with schizophrenia. These results contribute to the disturbed frontotemporal-thalamic network assumed in schizophrenia and are supported by additional functional neuroimaging, MRI morphometry, and neuropsychological evaluation. The combination of the described investigative techniques with MRS in follow-up studies may provide more specific clues for understanding the pathogenesis and disease course in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Ando K, Takei N, Matsumoto H, Iyo M, Isoda H, Mori N (2002) Neural damage in the lenticular nucleus linked with tardive dyskinesia in schizophrenia: a preliminary study using proton magnetic resonance spectroscopy. Schizophr Res 57 (2–3):273–279

    Google Scholar 

  2. Auer DP, Wilke M, Grabner A, Heidenreich JO, Bronisch T, Wetter TC (2001) Reduced NAA in the thalamus and altered membrane and glial metabolism in schizophrenic patients detected by 1H-MRS and tissue segmentation. Schizophr Res 52 (1–2):87–99

    Google Scholar 

  3. Bartha R, Williamson PC, Drost DJ, Malla A, Carr TJ, Cortese L, Canaran G, Rylett RJ, Neufeld RWJ (1997) Measurement of glutamate and glutamine in the medial prefrontal cortex of never-treated schizophrenic patients and healthy controls by proton magnetic resonance spectroscopy. Arch Gen Psychiatry 54:959–965

    Google Scholar 

  4. Bartha R, al-Semaan YM, Williamson PC, Drost DJ, Malla AK, Carr TJ, Densmore M, Canaran G, Neufeld RW (1999) A short echo proton magnetic resonance spectroscopy study of the left mesial-temporal lobe in first-onset schizophrenia patients. Biol Psychiatry 45 (11):1403–1411

    Article  Google Scholar 

  5. Berger GE, Wood JE, Pantelis C, Velakoulis D, Wellard RM, McGorry PD (2001) Implications for the lipid biology for the pathogenesis of schizophrenia. A NZ J Psychiatry 35:355–366

    Google Scholar 

  6. Bertolino A, Nawroz S, Mattay VS, Barnett AS, Duyn JH, Moonen CT, Frank JA, Tedeschi G, Weinberger DR (1996) Regionally specific pattern of neurochemical pathology in schizophrenia as assessed by multislice proton magnetic resonance spectroscopic imaging. Am J Psychiatry 153:1554–1563

    Google Scholar 

  7. Bertolino A, Kumra S, Callicott J, Mattay V, Lestz R, Jacobsen L, Barnett I, Duyn J, Frank J, Rapoport J, Weinberger D (1998) Common pattern of cortical pathology in childhood-onset and adult-onset schizophrenia as identified by proton magnetic resonance spectroscopic imaging. Am J Psychiatry 155:1376–1383

    Google Scholar 

  8. Bertolino A, Knable MB, Saunders RC, Callicott JH, Kolachana B, Mattay VS, Bachevalier J, Frank JA, Egan M, Weinberger DR (1999) Proton magnetic resonance spectroscopy in schizophrenia. EJR 30:132–141

    Article  Google Scholar 

  9. Bertolino A, Weinberger DR (1999) The relationship between dorsolateral prefrontal N-acetylaspartate measures and striatal dopamine activity in schizophrenia. Biol Psychiatry 45:660–667

    Article  Google Scholar 

  10. Bertolino A, Esposito G, Callicott JH, Mattay VS, Van Horn JD, Frank JA, Berman KF, Weinberger DR (2000) Specific relationship between prefrontal neuronal N-acetylaspartate and activation of the working memory cortical network in schizophrenia. Am J Psychiatry 157 (1):26–33

    Google Scholar 

  11. Bertolino A, Breier A, Callicott JH, Adler C, Mattay VS, Shapiro M, Frank JA, Pickar D, Weinberger DR (2000) The relationship between dorsolateral prefrontal neuronal N-acetylaspartate and evoked release of striatal dopamine in schizophrenia. Neuropsychopharmacology 22:125–132

    Article  Google Scholar 

  12. Bertolino A, Sciota D, Brudaglio F, Altamura M, Blasi G, Bellomo A, Antonucci N, Callicott JH, Goldberg TE, Scarabino T, Weinberger D, Nardini M (2003) Working memory deficits and levels of N-acetylaspartat in patients with schizophreniform disorder. Am J Psychiatry 160:483–489

    Article  Google Scholar 

  13. Block W, Bayer TA, Tepest R, Traber F, Rietschel M, Müller DJ, Schulze TG, Honer WG, Maier W, Schld HH, Falkai P (2000) Decreased frontal lobe ratio of N-acetyl aspartate to choline in familial schizophrenia: a proton magnetic resonance spectroscopy study. Neurosci Lett 289:147–151

    Google Scholar 

  14. Braus DF, Weber-Fahr W, Demirakca T, Henn FA (2001) Favorable effect on neuronal viability in the anterior cingulate gyrus due to long-term treatment with atypical antipsychotics: an MRSI study. Pharmacopsychiatry 34:251–253

    Google Scholar 

  15. Braus DF, Ende G, Weber-Fahr W, Demirakca T, Tost H, Henn FA (2002) Functioning and neuronal viability of the anterior cingulate neurons following antipsychotic treatment: MR-spectroscopic imaging in chronic schizophrenia. Eur Neuropsychopharmacol 12:145–152

    Google Scholar 

  16. Buckley PF, Moore C, Long H, Larkin C, Thompson P, Mulvany F, Redmond O, Stack JP, Ennis JT, Waddington JL (1994) 1-H magnetic resonance spectroscopy of the left temporal and frontal lobes in schizophrenia: clinical, neurodevelopmental and cognitive correlates. Biol Psychiatry 36:792–800

    Article  Google Scholar 

  17. Buckley PF, Friedman L (2000) Magnetic resonance spectroscopy. Bridging the neurochemistry and neuroanatomy in schizophrenia. Br J Psychiatry 176:203–205

    Article  Google Scholar 

  18. Burtscher IM, Holtas S (2001) Proton MR spectroscopy in clinical routine. J Magn Reson Imaging 13 (4):560–567

    Google Scholar 

  19. Bustillo JR, Rowland LM, Lauriello J, Petropoulos H, Hammond R, Hart B, Brooks WM (2002) High choline concentrations in the caudate nucleus in antipsychotic-naive patients with schizophrenia. Am J Psychiatry 159 (1):130–133

    Article  Google Scholar 

  20. Bustillo JR, Lauriello J, Rowland LM, Thomson LM, Petropoulos H, Hammond R, Hart B, Brooks WM (2002) Longitudinal follow-up of neurochemical changes during the first year of antipsychotic treatment in schizophrenia patients with minimal previous medication exposure. Schizophr Res 58 (2–3):313–321

    Google Scholar 

  21. Bustillo JR, Lauriello J, Rowland LM, Jung RE, Petropoulos H, Hart B, Blanchard J, Keith SJ, Brooks WM (2001) Effects of chronic haloperidol and clozapine treatments on frontal and caudate neurochemistry in schizophrenia. Psychiatr Res Neuroimag Sec 107:135–149

    Article  Google Scholar 

  22. Callicott JH, Egan MF, Bertolino A, Mattay VS, Langheim FJP, Frank JA, Weinberger DR (1998) Hippocampal N-acetylaspartate in unaffected siblings of patients with schizophrenia: a possible intermediate neurobiological phenotype. Biol Psychiatry 44:941–950

    Article  Google Scholar 

  23. Callicott JH, Bertolino A, Egan MF, Mattay VS, Langheim FJP, Weinberger DR (2000) Selective relationship between prefrontal N-acetylaspartate measures and negative symptoms in schizophrenia. Am J Psychiatry 157:1646–1651

    Article  Google Scholar 

  24. Cecil KM, Lenkinski RE, Gur RE, Gur RC (1999) Proton magnetic resonance spectroscopy in the frontal and temporal lobe of neuroleptic naïve patients with schizophrenia. Neuropsychopharmacology 20 (2):131–140

    Article  Google Scholar 

  25. Choe BY, Suh TS, Shinn KS, Lee C, Paik IH, Bahk YW Shinn KS, Lenkinski RE (1994) 1-H magnetic resonance spectroscopy characterization of neuronal dysfunction in drug-naïve, chronic schizophrenia. Acad Radiol 1:211–216

    Google Scholar 

  26. Deicken RF, Calabrese G, Merrin EL, Vinogradov S, Fein G, Weiner MW (1995) Asymmetry of temporal lobe phosphorus metabolism in schizophrenia: a 31-phosphorus magnetic resonance spectroscopic imaging study. Biol Psychiatry 38:279–286

    Article  Google Scholar 

  27. Deicken RF, Zhou L, Corwin MA, Vinogradov MD, Weiner M (1997) Decreased left frontal lobe N-acetylaspartate in schizophrenia. Am J Psychiatry 154:688–690

    Google Scholar 

  28. Deicken RF, Zhou L, Schuff N, Fein G, Weiner MW (1998) Hippocampal neuronal dysfunction in schizophrenia as measured by proton magnetic resonance spectroscopy. Biol Psychiatry 38:279–286

    Article  Google Scholar 

  29. Deicken RF, Johnson C, Eliaz Y, Schuff N (2000) Reduced concentrations of thalamic N-acetylaspartate in male patients with schizophrenia. Am J Psychiatry 157 (4):644–647

    Article  Google Scholar 

  30. Delamillieure P, Fernandez J, Constans JM, Brazo P, Benali K, Abadie P, Vasse T, Thibaut F, Courtheoux P, Petit M, Dollfus S (2000) Proton magnetic resonance spectroscopy of the medial prefrontal cortex in patients with deficit schizophrenia: a preliminary report. Am J Psychiatry 157 (4):641–643

    Article  Google Scholar 

  31. Delamillieure P, Constans J, Fernandez J, Brazo P, Dollfus S (2000) Proton magnetic resonance spectroscopy (1H-MRS) of the thalamus in schizophrenia. Eur Psychiatry 15 (8):489–491

    Article  Google Scholar 

  32. Delamillieure P, Constans JM, Fernandez J, Brazo P, Benali K, Courtheoux P, Thibaut F, Petit M, Dollfus S (2002) Proton magnetic resonance spectroscopy (1H MRS) in schizophrenia: investigation of the right and left hippocampus, thalamus, and prefrontal cortex. Schizophr Bull 28 (2):329–339

    Google Scholar 

  33. Di Costanzo A, Trojsi F, Tosetti M, Giannatempo GM, Nemore F, Piccirillo M, Bonavita S, Tedeschi G, Scarabino T (2003) High-field proton MRS of human brain. Eur J Radiol 48 (2):146–153

    Article  Google Scholar 

  34. Do KQ, Trabesinger AH, Kirsten-Kruger M, Lauer CJ, Dydak U, Hell D, Holsboer F, Boesiger P, Cuenod M (2000) Schizophrenia: gluthatione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 12 (10):3721–3728

    Google Scholar 

  35. Drost DJ, Riddle WR, Clarke GD, AAPM MR Task Group #9 (2002) Proton magnetic resonance spectroscopy in the brain: report of AAPM MR Task Group #9. Med Phys 29 (9):2177–2197

    Article  Google Scholar 

  36. Eluri R, Paul C, Roemer R, Boyko O (1998) Single-voxel proton magnetic resonance spectroscopy of the pons and cerebellum in patients with schizophrenia: a preliminary report. Psychiatry Res 84 (1):17–26

    Google Scholar 

  37. Ende G, Braus D, Walter S, Weber-Fahr W, Soher B, Maudsley A, Henn FA (2000) Effects of age, medication, and illness duration on the N-acetylaspatate signal of the anterior cingulated region in schizophrenia. Schizophr Res 41:389–395

    Article  Google Scholar 

  38. Ende G, Braus DF, Walter S, Henn FA (2001) Lower concentration of thalamic N-acetylaspartate in patients with schizophrenia: a replication study. Am J Psychiatry 158 (8):1314–1316

    Article  Google Scholar 

  39. Fujimoto T, Nakano T, Takano T, Takeuchi K, Yamada K, Fukuzako T, Akimoto H (1996) Proton magnetic resonance spectroscopy of basal ganglia in chronic schizophrenia. Biol Psychiatry 40 (1):14–18

    Article  Google Scholar 

  40. Fukuzako H, Takeuchi K, Ueyama K (1994) 31 P magnetic resonance spectroscopy of the medial temporal lobe of schizophrenic patients with neuroleptic-resistant marked positive symptoms. Eur Arch Psych Clin Neurosci 244:236–240

    Google Scholar 

  41. Fukuzako H, Takeuchi K, Kokazono Y, Fukuzako T, Yamada K, Hashiguchi T, Obo Y, Ueyama K, Takigawa M, Fujimoto T (1995) Proton magnetic resonance spectroscopy of the left medial temporal and frontal lobes in chronic schizophrenia: preliminary report. Psychiatry Res 61:193–200

    Google Scholar 

  42. Fukuzako H, Kodama S, Fukuzako T, Yamada K, Doi W, Sato D, Takigawa M (1999) Subtype-associated metabolite differences in the temporal lobe in schizophrenia detected by proton magnetic resonance spectroscopy. Psychiatry Res 92 (1):45–56

    Google Scholar 

  43. Fukuzako H (2000) Heritability heightens brain metabolite differences in schizophrenia. J Neuropsychiatry Clin Neurosci 12 (1):95–97

    Google Scholar 

  44. Goff DC, Hennen J, Lyoo IK, Tsai G, Wald LL, Evins AE, Yurgelun-Todd DA, Renshaw PF (2002) Modulation of brain and serum glutamatergic concentrations following a switch from conventional neuroleptics to olanzapine. Biol Psychiatry 51 (6):493–497

    Article  Google Scholar 

  45. Hagino H, Suzuki M, Mori K, Nohara S, Yamashita I, Takahashi T, Kurokawa K, Matsui M, Watanabe N, Seto H, Kurachi M (2002) Proton magnetic resonance spectroscopy of the inferior frontal gyrus and thalamus and its relationship to verbal learning task performance in patients with schizophrenia: a preliminary report. Psychiatry Clin Neurosci 56 (5):499–507

    Google Scholar 

  46. Heimberg C, Komoroski RA, Lawson WB, Cardwell D, Karson CN (1998) Regional proton magnetic resonance spectroscopy in schizophrenia and exploration of drug effect. Psychiatry Res 83 (2):105–115

    Google Scholar 

  47. Kegeles LS, Shungu DC, Anjilvel S, Chan S, Ellis SP, Xanthopoulos E, Malaspina D, Gorman JM, Mann JJ, Laruelle M, Kaufmann CA (2000) Hippocampal pathology in schizophrenia: magnetic resonance imaging and spectroscopy studies. Psychiatry Res 98 (3):163–175

    Google Scholar 

  48. Keshavan MS, Kapur S, Pettegrew JW (1991) Magnetic resonance spectroscopy in psychiatry: potential, pitfalls, and promise. Am J Psychiatry 148:976–985

    Google Scholar 

  49. Keshavan MS, Montrose DM, Pierri JN, Dick EL, Rosenberg D, Talagala L, Sweeney JA (1997) Magnetic resonance imaging and spectroscopy in offspring at risk for schizophrenia: preliminary studies. Prog Neuropsychopharmacol Biol Psychiatry 21 (8):1285–1295

    Article  Google Scholar 

  50. Keshavan MS, Stanley JA, Pettegrew JW (2000) Magnetic resonance spectroscopy in schizophrenia: methodological issues and findings—part II. Biol Psychiatry 48:369–380

    Article  Google Scholar 

  51. Lim K, Adalsteinsson E, Spielman D, Sullivan E, Rosenbloom M, Pfefferbaum A (1998) Proton magnetic resonance spectroscopic imaging of cortical gray and white matter in schizophrenia. Arch Gen Psychiatry 55:346–352

    Article  Google Scholar 

  52. Maier M, Ron MA, Barker GJ, Tofts PS (1995) Proton magnetic resonance spectroscopy: an in vivo method of estimating hippocampal neuronal depletion in schizophrenia. Psychol Med 25:1201–1209

    Google Scholar 

  53. Maier M, Ron MA (1996) Hippocampal age-related changes in schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr Res 22:5–17

    Article  Google Scholar 

  54. Malhi GS, Valenzuela M, Wen W, Sachdev P (2002) Magnetic resonance spectroscopy and its applications in psychiatry. Aust N Z J Psychiatry 36:31–43

    Article  Google Scholar 

  55. Mason GF (2003) Magnetic resonance spectroscopy for studies of neurotransmission in vivo. Psychopharmacol Bull 37 (2):26–40

    Google Scholar 

  56. Moore CM, Bonello CM, Sherwood AR, Cohen BM, Renshaw PF, Yurgulen-Todd DA (2002) Mesial temporal lobe Cho to Cr (PCr) ratio asymmetry in chronic schizophrenics. Schizophrenia Res 57 (1):35–42

    Article  Google Scholar 

  57. Mullins PG, Rowland L, Bustillo J, Bedrick EJ, Lauriello J, Brooks WM (2003) Reproducibility of 1-H-MRS measurements in schizophrenic patients. Magn Reson Med 50 (4):704–707

    Article  Google Scholar 

  58. Nasrallah H, Skinner TE, Schmalbrock P, Robitaille PM (1994) Proton magnetic resonance spectroscopy (1H-MRS) of the hippocampal formation in schizophrenia: a pilot study. Br J Psychiatry 165:481–485

    Google Scholar 

  59. Ohara K, Isoda H, Suzuki Y, Takehara Y, Ochiai M, Takeda H, Hattori K, Igarashi Y, Ohara K (2000) Proton magnetic resonance spectroscopy of lenticular nuclei in simple schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 24 (4):507–519

    Article  Google Scholar 

  60. Omori M, Murata T, Kimura H, Koshimoto Y, Kado H, Ishimori Y, Ito H, Wada Y (2000) Thalamic abnormalities in patients with schizophrenia revealed by proton magnetic resonance spectroscopy. Psychiatry Res 98 (3):155–162

    Google Scholar 

  61. O’Neill J, Levitt J, Caplan R, Asarnow R, McCracken JT, Toga AW, Alger JR (2004) 1-H MRSI evidence of metabolic abnormalities in childhood-onset schizophrenia. Neuroimage 21 (4):1781–1789

    Article  Google Scholar 

  62. Pae CU, Choe BY, Joo RH, Lim HK, Kim TS, Yoo SS, Choi BG, Kim JJ, Lee SJ, Lee C, Paik IH, Lee CU (2004) Neuronal dysfunction of the frontal lobe in schizophrenia. Neuropsychobiology 50 (3):211–215

    Article  Google Scholar 

  63. Pettegrew JW, Kopp SJ, Minshew NJ, Glonek T, Feliksik JM, Tow JP, Cohen MM (1987) 31P nuclear magnetic resonance studies of phosphoglyceride metabolism in developping and degenerating brain: preliminary observations. J Neuropath Exp Neurol 46:419–430

    Google Scholar 

  64. Pettegrew JW, Keshavan MS, Panchalingam K, Strycho S, Kaplan DB, Tretta MG, Allen M (1991) Alterations in brain high-energy phosphate and membrane metabolism in first-episode, drug-naive schizophrenics. A pilot study of the dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Arch Gen Psychiatry 48:563–568

    Google Scholar 

  65. Renshaw P, Yurgelun-Todd DA, Tohen M, Gruber S, Cohen BM (1995) Temporal lobe proton magnetic resonance spectroscopy of patients with first-episode psychosis. Am J Psychiatry 152:444–446

    Google Scholar 

  66. Riehemann S, Volz HP, Smesny S, Hübner G, Wenda B, Rößger G, Sauer H (2000) 31-Phosphor-Magnetresonanzspektroskopie in der Schizophrenieforschung. Nervenarzt 71:354–363

    Article  Google Scholar 

  67. Scherk H, Vogeley K, Falkai P (2003) The importance of interneurons in schizophrenic and affective disorders. Fortschr Neurol Psychiatr 71 [Suppl 1]:S27–32

  68. Shioiri T, Hamakawa H, Kato T, Murashita J, Fujii K, Inubushi T, Takahashi S (1996) Proton magnetic resonance spectroscopy of the basal ganglia in patients with schizophrenia: a preliminary report. Schizophr Res 22 (1):19–26

    Article  Google Scholar 

  69. Sigmundsson T, Maier M, Toone BK, Williams SC, Simmons A, Greenwood K, Ron MA (2003) Frontal lobe N-acetylaspartate correlates with psychopathology in schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr Res 64 (1):63–71

    Article  Google Scholar 

  70. Stanley JA, Williamson PC, Drost DJ, Carr TJ, Rylett J, Malla A, Thomson RT (1995) An in vivo study of the prefrontal cortex of schizophrenic patients at different stages of illness via phosphorus magnetic resonance spectroscopy. Arch Gen Psychiatry 52:399–406

    Google Scholar 

  71. Steel RM, Bastin ME, McConnell S, Marshall I, Cunningham-Owens DG, Lawrie SM, Johnstone EC, Best JJ (2001) Diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy (1-H-MRS) in schizophrenic subjects and normal controls. Psychiatry Res 106 (3):161–170

    Google Scholar 

  72. Theberge J, Bartha R, Drost DJ, Menon RS, Malla A, Takhar J, Neufeld RW, Rogers J, Pavlosky W, Schaefer B, Densmore M, Al-Semaan Y, Williamson PC (2002) Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers. Am J Psychiatry 159 (11):1944–1946

    Article  Google Scholar 

  73. Theberge J, Al-Semaan Y, Williamson PC, Menon RS, Neufeld RW, Rajakumar N, Schaefer B, Densmore M, Drost DJ (2003) Glutamate and glutamine in the anterior cingulate and thalamus of medicated patients with chronic schizophrenia and healthy comparison subjects measured with 4.0-T proton MRS. Am J Psychiatry 160 (12):2231–2233

    Article  Google Scholar 

  74. Thomas MA, Ke Y, Levitt J, Caplan R, Curran J, Asarnow R, McCracken J (1998) Preliminary study of frontal lobe1H MR spectroscopy in childhood-onset schizophrenia. JMRI 8:841–846

    Google Scholar 

  75. Tibbo P, Hanstock CC, Asghar S, Silverstone P, Allen PS (2000) Proton magnetic resonance spectroscopy (1-H-MRS) of the cerebellum in men with schizophrenia. J Psychiatry Neurosci 25 (5):509–512

    Google Scholar 

  76. Tibbo P, Hanstock C, Valiakalayil A, Allen P (2004) 3-T proton MRS investigation of glutamate and glutamine in adolescents at high genetic risk for schizophrenia. Am J Psychiatry 161 (6):1116–1118

    Article  Google Scholar 

  77. Vance AL, Velakoulis D, Maruff P, Wood SJ, Desmond P, Pantelis C (2000) Magnetic resonance spectroscopy and schizophrenia: what have we learnt? Aust N Z J Psychiatry 34 (1):14–25

    Article  Google Scholar 

  78. Volz HP, Rzanny R, Rößger G, Hübner G, Kreitschmann-Andermahr I, Kaiser WA, Sauer H (1998) 31 phosphorus magnetic resonance spectroscopy of the dorsolateral prefrontal region in schizophrenics—a study including 50 patients and 36 controls. Biol Psychiatry 44:399–404

    Article  Google Scholar 

  79. Wobrock T, Pajonk FG, Falkai P (2004) Schizophrenie. Epidemiologie, Ätiopathogenese, Symptomatologie, Diagnostik und Differenzialdiagnostik. Fortschr Neurol Psychiat 72:98–113

    Google Scholar 

  80. Wood SJ, Berger C, Velakoulis D, Phillips LJ, McGorry PD, Yung AE, Desmond P, Pantelis C (2003) Proton magnetic resonance spectroscopy in first episode psychosis and ultra high-risk individuals. Schizophr Bull 29:831–843

    Google Scholar 

  81. Yamasue H, Fukui T, Fukuda R, Yamada H, Yamasaki S, Kuroki N, Abe O, Kasai K, Tsujii K, Iwanami A, Aoki S, Ohtomo K, Kato N, Kato T (2002) 1-H-MR spectroscopy and gray matter volume of the anterior cingulate cortex in schizophrenia. Neuroreport 13 (16):2133–2137

    Article  CAS  PubMed  Google Scholar 

  82. Yamasue H, Fukui T, Fukuda R, Kasai K, Iwanami A, Kato N, Kato T (2003) Drug-induced parkinsonism in relation to choline-containing compounds measured by 1-H-MR spectroscopy in putamen of chronically medicated patients with schizophrenia. Int J Neuropsychopharmacol 6 (4):353–360

    Article  Google Scholar 

  83. Yurgelun-Todd DA, Renshaw PF, Gruber SA, Ed M, Waternaux C, Cohen BM (1996) Proton magnetic resonance spectroscopy of the temporal lobes in schizophrenics and normal controls. Schizophr Res 19 (1):55–59

    Article  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Wobrock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wobrock, T., Scherk, H. & Falkai, P. Magnetresonanzspektroskopie bei Schizophrenie. Radiologe 45, 124–136 (2005). https://doi.org/10.1007/s00117-004-1161-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-004-1161-2

Schlüsselwörter

Keywords

Navigation