Skip to main content
Log in

Kongenitale Malformationen des Großhirns

Teil 1: Entwicklungsstörungen des Kortex

  • Pädiatrische Neuroradiologie
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Entwicklungsstörungen des Kortex werden in der Regel eingeteilt in Störungen der zellulären Proliferation und Apoptose, der neuronalen Migration und der kortikalen Organisation. Basierend auf neueren molekularbiologischen und histopathologischen Erkenntnissen wurde vor kurzem eine modifizierte Klassifikation eingeführt. Zu den Störungen der neuronalen und glialen Proliferation und Apoptose werden nun die Mikrolissenzephalie und andere Formen der Mikrozephalie, die Megalenzephalien, die kortikalen Hamartome der tuberösen Sklerose, die kortikalen Dysplasien mit Ballonzellen und die Hemimegalenzephalie gezählt. Zu den neuronalen Migrationsstörungen rechnet man das Spektrum der Lissenzephalien, einschließlich der bandförmigen Heterotopien, die Pflastersteinlissenzephalien sowie die Gruppe der Heterotopien. Unter Organisationsstörungen des Kortex subsumiert man den Komplex aus Polymikrogyrie und Schizenzephalie sowie die kortikalen Dysplasien ohne Ballonzellen. Hoch auflösende magnetresonanztomographische Untersuchungen erlauben in zunehmendem Maße einen Nachweis der kortikalen Entwicklungsstörungen. Dieser Artikel soll die MR-tomographischen Charakteristika und relevanten klinischen Symptome der Entwicklungsstörungen des Kortex illustrieren.

Abstract

Disorders of supratentorial cortical development are usually divided into disorders of neuronal proliferation, neuronal migration and cortical organization. Based upon molecular biologic discoveries, a modified classification has recently been proposed. The category of malformations of abnormal neuronal and glial proliferation and apoptosis now includes microlissencephalies, megalencephalies, hemimegalencephalies and cortical dysplasias with balloon cells. Malformations due to abnormal neuronal migration now subsume the lissencephaly spectrum including the subcortical band heterotopias, the cobblestone complex and the group of heterotopias. Malformations due to abnormal cortical organization include the spectrum of polymicrogyria and schizencephaly as well as cortical dysplasias without balloon cells. High-resolution magnetic resonance imaging (MRI) has led to an increasing awareness of these malformations. This article aims to illustrate the classification, MRI presentation and relevant clinical features of the most commonly encountered disorders of cortical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10

Literatur

  1. Aida N, Tamagawa K, Takada K et al. (1996) Brain MR in Fukuyama congenital muscular dystrophy. AJNR Am J Neuroradiol 17:605–613

    CAS  PubMed  Google Scholar 

  2. Aniskiewicz AS, Frumkin NL, Brady DE et al. (1990) Magnetic resonance imaging and neurobehavioral correlates in schizencephaly. Arch Neurol 47:911–916

    CAS  PubMed  Google Scholar 

  3. Barkovich AJ (1988) Abnormal vascular drainage in anomalies of neuronal migration. AJNR Am J Neuroradiol 9:939–942

    CAS  PubMed  Google Scholar 

  4. Barkovich AJ (1996) Subcortical heterotopia: a distinct clinicoradiologic entity. AJNR Am J Neuroradiol 17:1315–1322

    CAS  PubMed  Google Scholar 

  5. Barkovich AJ, Norman D (1988) MR imaging of schizencephaly. AJR Am J Roentgenol 150:1391–1396

    CAS  PubMed  Google Scholar 

  6. Barkovich AJ, Chuang SH (1990) Unilateral megalencephaly: correlation of MR imaging and pathologic characteristics. AJNR Am J Neuroradiol 11:523–531

    CAS  PubMed  Google Scholar 

  7. Barkovich AJ, Kjos BO (1992) Gray matter heterotopias: MR characteristics and correlation with developmental and neurologic manifestations. Radiology 182:493–499

    PubMed  Google Scholar 

  8. Barkovich AJ, Kjos BO (1992) Nonlissencephalic cortical dysplasias: correlation of imaging findings with clinical deficits. AJNR Am J Neuroradiol 13:95–103

    CAS  PubMed  Google Scholar 

  9. Barkovich AJ, Kjos BO (1992) Schizencephaly: correlation of clinical findings with MR characteristics. AJNR Am J Neuroradiol 13:85–94

    CAS  PubMed  Google Scholar 

  10. Barkovich AJ, Kjos BO, Jackson DE Jr, Norman D (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180

    CAS  PubMed  Google Scholar 

  11. Barkovich AJ, Koch TK, Carrol CL (1991) The spectrum of lissencephaly: report of ten patients analyzed by magnetic resonance imaging. Ann Neurol 30:139–146

    CAS  PubMed  Google Scholar 

  12. Barkovich AJ, Gressens P, Evrard P (1992) Formation, maturation, and disorders of brain neocortex. AJNR Am J Neuroradiol 13:423–446

    CAS  PubMed  Google Scholar 

  13. Barkovich AJ, Guerrini R, Battaglia G et al. (1994) Band heterotopia: correlation of outcome with magnetic resonance imaging parameters. Ann Neurol 36:609–617

    CAS  PubMed  Google Scholar 

  14. Barkovich AJ, Rowley H, Bollen A (1995) Correlation of prenatal events with the development of polymicrogyria. AJNR Am J Neuroradiol 16:822–827

    CAS  PubMed  Google Scholar 

  15. Barkovich AJ, Kuzniecky RI, Dobyns WB et al. (1996) A classification scheme for malformations of cortical development. Neuropediatrics 27:59–63

    CAS  PubMed  Google Scholar 

  16. Barkovich AJ, Kuzniecky RI, Bollen AW, Grant PE (1997) Focal transmantle dysplasia: a specific malformation of cortical development. Neurology 49:1148–1152

    CAS  PubMed  Google Scholar 

  17. Barkovich AJ, Ferriero DM, Barr RM et al. (1998) Microlissencephaly: a heterogeneous malformation of cortical development. Neuropediatrics 29:113–119

    CAS  PubMed  Google Scholar 

  18. Barkovich AJ, Kuzniecky RI, Jackson GD et al. (2001) Classification system for malformations of cortical development: update 2001. Neurology 57:2168–2178

    CAS  PubMed  Google Scholar 

  19. Bosman C, Boldrini R, Dimitri L et al. (1996) Hemimegalencephaly. Histological, immunohistochemical, ultrastructural and cytofluorimetric study of six patients. Childs Nerv Syst 12:765–775

    CAS  PubMed  Google Scholar 

  20. Calof AL, Lander AD (1991) Relationship between neuronal migration and cell-substratum adhesion: laminin and merosin promote olfactory neuronal migration but are anti-adhesive. J Cell Biol 115:779–794

    CAS  PubMed  Google Scholar 

  21. Chan S, Chin SS, Nordli DR et al. (1998) Prospective magnetic resonance imaging identification of focal cortical dysplasia, including the non-balloon cell subtype. Ann Neurol 44:749–757

    CAS  PubMed  Google Scholar 

  22. Chugani HT, Shields WD, Shewmon DA et al. (1990) Infantile spasms: I. PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment. Ann Neurol 27:406–413

    CAS  PubMed  Google Scholar 

  23. Colombo N, Tassi L, Galli C et al. (2003) Focal cortical dysplasias: MR imaging, histopathologic, and clinical correlations in surgically treated patients with epilepsy. AJNR Am J Neuroradiol 24:724–733

    PubMed  Google Scholar 

  24. Dobyns WB (1989) The neurogenetics of lissencephaly. Neurol Clin 7:89–105

    CAS  PubMed  Google Scholar 

  25. Dobyns WB, Guerrini R, Czapansky-Beilman DK et al. (1997) Bilateral periventricular nodular heterotopia with mental retardation and syndactyly in boys: a new X-linked mental retardation syndrome. Neurology 49:1042–1047

    PubMed  Google Scholar 

  26. Fukuyama Y, Osawa M, Suzuki H (1981) Congenital progressive muscular dystrophy of the Fukuyama type—clinical, genetic and pathological considerations. Brain Dev 3:1–29

    CAS  PubMed  Google Scholar 

  27. Gleeson JG, Allen KM, Fox JW et al. (1998) Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92:63–72

    CAS  PubMed  Google Scholar 

  28. Gressens P, Evrard P (1993) The glial fascicle: an ontogenic and phylogenic unit guiding, supplying and distributing mammalian cortical neurons. Brain Res Dev Brain Res 76:272–277

    Article  CAS  PubMed  Google Scholar 

  29. Gropman AL, Barkovich AJ, Vezina LG et al. (1997) Pediatric congenital bilateral perisylvian syndrome: clinical and MRI features in 12 patients. Neuropediatrics 28:198–203

    Google Scholar 

  30. Haltia M, Leivo I, Somer H et al. (1997) Muscle-eye-brain disease: a neuropathological study. Ann Neurol 41:173–180

    CAS  PubMed  Google Scholar 

  31. Kalifa GL, Chiron C, Sellier N et al. (1987) Hemimegalencephaly: MR imaging in five children. Radiology 165:29–33

    CAS  PubMed  Google Scholar 

  32. King M, Stephenson JB, Ziervogel M et al. (1985) Hemimegalencephaly—a case for hemispherectomy? Neuropediatrics 16:46–55

    CAS  PubMed  Google Scholar 

  33. Mackay MT, Becker LE, Chuang SH et al. (2003) Malformations of cortical development with balloon cells: Clinical and radiologic correlates. Neurology 60:580–587

    CAS  PubMed  Google Scholar 

  34. Mathis JM, Barr JD, Albright AL, Horton JA (1995) Hemimegalencephaly and intractable epilepsy treated with embolic hemispherectomy. AJNR Am J Neuroradiol 16:1076–1079

    CAS  PubMed  Google Scholar 

  35. O’Rourke NA, Chenn A, McConnell SK (1997) Postmitotic neurons migrate tangentially in the cortical ventricular zone. Development 124:997–1005

    CAS  PubMed  Google Scholar 

  36. Packard AM, Miller VS, Delgado MR (1997) Schizencephaly: correlations of clinical and radiologic features. Neurology 48:1427–1434

    CAS  PubMed  Google Scholar 

  37. Palmini A, Andermann F, Olivier A et al. (1991) Focal neuronal migration disorders and intractable partial epilepsy: a study of 30 patients. Ann Neurol 30:741–749

    CAS  PubMed  Google Scholar 

  38. Pilz D, Stoodley N, Golden JA (2002) Neuronal migration, cerebral cortical development, and cerebral cortical anomalies. J Neuropathol Exp Neurol 61:1–11

    PubMed  Google Scholar 

  39. Renowden SA, Squier M (1994) Unusual magnetic resonance and neuropathological findings in hemimegalencephaly: report of a case following hemispherectomy. Dev Med Child Neurol 36:357–361

    CAS  PubMed  Google Scholar 

  40. Rhodes RE, Hatten HP Jr, Ellington KS (1992) Walker-Warburg syndrome. AJNR Am J Neuroradiol 13:123–126

    CAS  PubMed  Google Scholar 

  41. Sheen VL, Topcu M, Berkovic S et al. (2003) Autosomal recessive form of periventricular heterotopia. Neurology 60:1108–1112

    CAS  PubMed  Google Scholar 

  42. Takanashi J, Barkovich AJ (2003) The changing MR imaging appearance of polymicrogyria: a consequence of myelination. AJNR Am J Neuroradiol 24:788–793

    PubMed  Google Scholar 

  43. Tassi L, Colombo N, Garbelli R et al. (2002) Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome. Brain 125:1719–1732

    Article  CAS  PubMed  Google Scholar 

  44. Taylor DC, Falconer MA, Bruton CJ, Corsellis JA (1971) Focal dysplasia of the cerebral cortex in epilepsy. J Neurol Neurosurg Psychiatry 34:369–387

    CAS  PubMed  Google Scholar 

  45. Urbach H, Scheffler B, Heinrichsmeier T et al. (2002) Focal cortical dysplasia of Taylor’s balloon cell type: a clinicopathological entity with characteristic neuroimaging and histopathological features, and favorable postsurgical outcome. Epilepsia 43:33–40

    Article  Google Scholar 

  46. Valanne L, Pihko H, Katevuo K et al. (1994) MRI of the brain in muscle-eye-brain (MEB) disease. Neuroradiology 36:473–476

    CAS  PubMed  Google Scholar 

  47. van der Knaap MS, van Wezel-Meijler G, Barth PG et al. (1996) Normal gyration and sulcation in preterm and term neonates: appearance on MR images. Radiology 200:389–396

    PubMed  Google Scholar 

  48. Williams RS, Swisher CN, Jennings M et al. (1984) Cerebro-ocular dysgenesis (Walker-Warburg syndrome): neuropathologic and etiologic analysis. Neurology 34:1531–1541

    CAS  PubMed  Google Scholar 

  49. Wolpert SM, Cohen A, Libenson MH (1994) Hemimegalencephaly: a longitudinal MR study. AJNR Am J Neuroradiol 15:1479–1482

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ertl-Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ertl-Wagner, B., Rummeny, C. & Reiser, M.F. Kongenitale Malformationen des Großhirns. Radiologe 43, 915–924 (2003). https://doi.org/10.1007/s00117-003-0974-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-003-0974-8

Schlüsselwörter

Keywords

Navigation