Skip to main content
Log in

Cladribin-Tabletten

Orale Immuntherapie der schubförmigen Multiplen Sklerose mit kurzen, jährlichen Behandlungsphasen

Cladribine tablets

Oral immunotherapy of relapsing-remitting multiple sclerosis with short yearly treatment periods

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die selektive Modulation der Zahl und Funktion von Lymphozyten ist ein attraktives Konzept in der Therapie der schubförmigen MS (RMS).

Fragestellung

Seit August 2017 steht mit Cladribin-Tabletten (Mavenclad®) ein orales RMS-Medikament mit innovativem Behandlungskonzept zur Verfügung. Diese Übersicht fasst die aktuelle Datenlage und anwendungsorientierte Aspekte zusammen.

Ergebnisse

Cladribin-Tabletten werden in zwei Behandlungsphasen von jeweils 8 bis 10 (2-mal 4 bis 5) Tagen im Abstand von einem Jahr verabreicht und vermindern relativ gezielt die Anzahl von T‑ und B‑Lymphozyten, die sich in der Folge mit unterschiedlicher Kinetik allmählich rekonstituieren. Die ausgeprägte und langanhaltende Wirkung auf die klinische und paraklinische Krankheitsaktivität geht mit guter Verträglichkeit und einem insgesamt günstigen Sicherheitsprofil einher. Es besteht bei einem Teil der Patienten nach dem Absolvieren der zwei Behandlungsphasen die Aussicht auf eine längere therapiefreie Zeit ohne relevante Krankheitsaktivität. Regelmäßiges Monitoring der Lymphozytenzahlen und eine zuverlässige Kontrazeption in den vorgesehenen Zeitfenstern sind die wichtigsten Sicherheitsmaßnahmen. Es besteht kein Hinweis auf ein erhöhtes Malignomrisiko.

Schlussfolgerungen

Cladribin-Tabletten sind eine wichtige Erweiterung der Therapielandschaft bei RMS. Bei patientenfreundlichen kurzzeitigen Einnahmephasen und günstigem Nebenwirkungsprofil erreicht die Therapie eine länger anhaltende starke Reduktion der Krankheitsaktivität. Die primäre Zielgruppe für Cladribin-Tabletten sind Patienten mit relevanter Krankheitsaktivität (hochaktiver RMS) unter einer Erstlinientherapie z. B. mit injizierbaren Substanzen.

Abstract

Background

The selective modulation of lymphocyte numbers and function is an attractive concept in the treatment of relapsing-remitting multiple sclerosis (RMS).

Objective

Cladribine tablets (Mavenclad®), an oral RMS medication with an innovative treatment concept, have been available since August 2017. This review article summarizes the currently available clinical study data on cladribine tablets and aspects of their use in clinical practice.

Results

Cladribine tablets are administered during two treatment phases of 8–10 (two times 4–5) days with a 1-year interval. The drug selectively reduces the number of T and B lymphocytes, which are subsequently gradually reconstituted with divergent kinetics. A pronounced and sustained effect on the clinical and paraclinical MS disease activity is achieved with good tolerability and a favorable overall safety profile. After completing the two short treatment phases, a relevant proportion of the treated patients experience a prolonged treatment-free period with absence of relevant disease activity. Regular monitoring of lymphocyte counts and reliable contraception during the required time frames are the most important safety measures. There is no evidence of an increased risk of malignancies.

Conclusion

Cladribine tablets are an important addition to the therapeutic landscape in RMS. With patient-friendly short dosing periods and a favorable adverse event profile, cladribine tablets provide a sustained and strong reduction of MS disease activity. The primary target population for cladribine tablets is patients with relevant MS disease activity (highly active RMS) while on first-line treatment, e. g. with injectable disease-modifying drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11

Literatur

  1. Baker D, Herrod SS, Alvarez-Gonzalez C et al (2017) Both cladribine and alemtuzumab may affect MS via B‑cell depletion. Neurol Neuroimmunol Neuroinflamm 4:e360

    Article  PubMed  PubMed Central  Google Scholar 

  2. Beutler E (1992) Cladribine (2-chlorodeoxyadenosine). Lancet 340:952–956

    Article  PubMed  CAS  Google Scholar 

  3. ClinicalTrials.gov (2017) Prospective observational long-term safety registry of multiple sclerosis patients who have participated in Cladribine clinical trials (PREMIERE) www.clinicaltrials.gov; NCT01013350

  4. Cohen A, Hirschhorn R, Horowitz SD et al (1978) Deoxyadenosine triphosphate as a potentially toxic metabolite in adenosine deaminase deficiency. Proc Natl Acad Sci U S A 75:472–476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Cook S, Leist T, Comi G et al (2016) Cladribine tablets in the treatment of patients with multiple sclerosis: an integrated analysis of safety from the multiple sclerosis clinical development program. Congress of the European Committee for Treatment and Research in Multiple Sclerosis, London (Poster P644)

    Google Scholar 

  6. Cook S, Rammohan K, Rieckmann P et al (2016) Slowing of disability progression based on 6‑month confirmed EDSS in patients with relapsing-remitting multiple sclerosis (RRMS) treated with cladribine tablets in the CLARITY study: a post-hoc subgroup analysis. American Academy of Neurology Annual Meeting, Vancouver (Poster P3.058)

    Google Scholar 

  7. Cook S, Vermersch P, Comi G et al (2011) Safety and tolerability of cladribine tablets in multiple sclerosis: the CLARITY (CLAdRIbine Tablets treating multiple sclerosis orallY) study. Mult Scler 17:578–593

    Article  PubMed  CAS  Google Scholar 

  8. de Stefano N, Giorgio A, Battaglini M et al (2016) Cladribine effect on brain volume loss and its correlation with disability progression in patients with relapsing multiple sclerosis. Congress of the European Committee for Treatment and Research in Multiple Sclerosis, London (Poster P497)

    Google Scholar 

  9. DMSKW-Register Ruhr-Universität Bochum (2017) https://www.ms-und-kinderwunsch.de. Zugegriffen: 28.09.2017

  10. European Medicines Agency (2017) Fachinformation Cladribin-Tabletten (Mavenclad®). http://www.ema.europa.eu/ema/. Zugegriffen: 28.09.2017

    Google Scholar 

  11. Freedman MS, Leist TP, Comi G et al (2017) The efficacy of cladribine tablets in CIS patients retrospectively assigned the diagnosis of MS using modern criteria: results from the ORACLE-MS study. Mult Scler J Exp Transl Clin 3(4):2055217317732802. https://doi.org/10.1177/2055217317732802

    Article  PubMed  PubMed Central  Google Scholar 

  12. Freyer CW, Gupta N, Wetzler M, Wang ES (2015) Revisiting the role of cladribine in acute myeloid leukemia: an improvement on past accomplishments or more old news? Am J Hematol 90:62–72

    Article  PubMed  CAS  Google Scholar 

  13. Giblett ER, Anderson JE, Cohen F et al (1972) Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet 2:1067–1069

    Article  PubMed  CAS  Google Scholar 

  14. Giovannoni G, Comi G, Cook S et al (2010) A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med 362:416–426 (Supplementary Material)

    Article  PubMed  CAS  Google Scholar 

  15. Giovannoni G, Comi G, Cook S et al (2010) A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med 362:416–426

    Article  PubMed  CAS  Google Scholar 

  16. Giovannoni G, Comi G, Cook S et al (2016) Clinical efficacy of cladribine tablets in patients with relapsing-remitting multiple sclerosis (RRMS): final results from the 120-week phase IIIb extension trial to the CLARITY Study. American Academy of Neurology Annual Meeting, Vancouver (P3.028)

    Google Scholar 

  17. Giovannoni G, Comi G, Cook S et al (2016) Efficacy of cladribine tablets in MS HAD. European Charcot Foundation, Baveno (Posterpräsentation)

    Google Scholar 

  18. Giovannoni G, Comi G, Cook S et al (2013) Safety and efficacy of oral cladribine in patients with relapsing-remitting multiple sclerosis: results from the 96 week phase IIIb extension trial to the CLARITY study. American Academy of Neurology Annual Meeting, San Diego (Poster P7.119)

    Google Scholar 

  19. Giovannoni G, Cook S, Rammohan K et al (2011) Sustained disease-activity-free status in patients with relapsing-remitting multiple sclerosis treated with cladribine tablets in the CLARITY study: a post-hoc and subgroup analysis. Lancet Neurol 10:329–337

    Article  PubMed  CAS  Google Scholar 

  20. Giovannoni G, Rammohan K, Cook S et al (2017) Efficacy of cladribine tablets 3.5 mg/kg in high disease activity (HDA) subgroups of patients with relapsing multiple sclerosis (RMS) in the CLARITY study. American Academy of Neurology Annual Meeting, Boston (Poster P6.360)

    Google Scholar 

  21. Giovannoni G, Soelberg Sorensen P et al (2017) Safety and efficacy of cladribine tablets in patients with relapsing-remitting multiple sclerosis: results from the randomized extension trial of the CLARITY study. Mult Scler 1:1352458517727603 (und zugehöriges Supplementary Material)

    Google Scholar 

  22. Gold R, Gass A, Haupts M et al (2015) Therapieziele und Therapiemanagement bei schubförmig-remittierender Multipler Sklerose. Nervenheilkunde 34:915–923

    Article  Google Scholar 

  23. Hartung HP, Aktas O, Kieseier B, Comi G (2010) Development of oral cladribine for the treatment of multiple sclerosis. J Neurol 257:163–170

    Article  PubMed  CAS  Google Scholar 

  24. Hohlfeld R, Dornmair K, Meinl E, Wekerle H (2016) The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol 15:198–209

    Article  PubMed  CAS  Google Scholar 

  25. Hohlfeld R, Dornmair K, Meinl E, Wekerle H (2016) The search for the target antigens of multiple sclerosis, part 2: CD8+ T cells, B cells, and antibodies in the focus of reverse-translational research. Lancet Neurol 15:317–331

    Article  PubMed  CAS  Google Scholar 

  26. Kappos L, Edan G, Freedman MS et al (2016) The 11-year long-term follow-up study from the randomized BENEFIT CIS trial. Neurology 87:978–987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Korsen M, Bragado AS, Peix L et al (2015) Cladribine exposure results in a sustained modulation of the cytokine response in human peripheral blood mononuclear cells. PLoS ONE 10(6):e129182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Leist TP, Comi G, Cree BA et al (2014) Effect of oral cladribine on time to conversion to clinically definite multiple sclerosis in patients with a first demyelinating event (ORACLE MS): a phase 3 randomised trial. Lancet Neurol 13:257–267

    Article  PubMed  CAS  Google Scholar 

  29. Leist TP, Weissert R (2011) Cladribine: mode of action and implications for treatment of multiple sclerosis. Clin Neuropharmacol 34:28–35

    Article  PubMed  CAS  Google Scholar 

  30. Merck Serono (2017) Archivdaten

  31. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952

    Article  PubMed  CAS  Google Scholar 

  32. Pakpoor J, Disanto G, Altmann DR et al (2015) No evidence for higher risk of cancer in patients with multiple sclerosis taking cladribine. Neurol Neuroimmunol Neuroinflamm 2:e158

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rammohan K, Giovannoni G, Comi G et al (2012) Cladribine tablets for relapsing-remitting multiple sclerosis: efficacy across patient subgroups from the phase III CLARITY study. Mult Scler Relat Disord 1:49–54

    Article  PubMed  CAS  Google Scholar 

  34. Salvat C, Curchod M, Guedj E et al (2009) Cellular expression of genes involved in cladribine metabolism. American Academy of Neurology Annual Meeting, Seattle (Poster P09.105)

    Google Scholar 

  35. Saven A, Piro LD (1994) 2‑Chlorodeoxyadenosine: a newer purine analog active in the treatment of indolent lymphoid malignancies. Ann Intern Med 120:784–791

    Article  PubMed  CAS  Google Scholar 

  36. Sigal DS, Miller HJ, Schram ED, Saven A (2010) Beyond hairy cell: the activity of cladribine in other hematologic malignancies. Blood 116:2884–2896

    Article  PubMed  CAS  Google Scholar 

  37. Soelberg-Sorensen P (2016) Cladribine tablets in RRMS: lymphocyte counts. Annual Meeting of the European Charcot Foundation, Baveno (Posterpräsentation)

    Google Scholar 

  38. Soelberg-Sørensen P, Comi G, Cook S et al (2009) Haematological profiles in patients treated with cladribine tablets for relapsing-remitting multiple sclerosis (RRMS): results from the CLARITY study, a 96 week, phase III, double-blind, placebo-controlled trial. Meeting of the European Neurological Society, Milano (Poster P359)

    Google Scholar 

  39. Soelberg-Sorensen P, Giovannoni G, Rieckmann P et al (2011) Relapses and lymphocyte counts before and after rescue therapy in the phase III, 96-week, double-blind, placebo-controlled CLARITY study of cladribine tablets for relapsing-remitting multiple sclerosis. Congress of the European Committee for Treatment and Research in Multiple Sclerosis, Amsterdam (Poster P917)

    Google Scholar 

  40. Wekerle H (2017) B cells in multiple sclerosis. Autoimmunity 50:57–60

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Wir danken Dr. M. Fischer und Dr. P. Göttle für Hilfe bei Literatursuche und -analyse und Erstellung der Grafiken. Herr Dr. M. Fischer erhielt einen „unrestricted medical writing grant“ der Fa. Merck KG Darmstadt. Diese hatte keinen Einfluss auf den Inhalt des Manuskripts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Meuth.

Ethics declarations

Interessenkonflikt

S.G. Meuth erhielt Vortragshonorare, Reisekostenerstattungen für Kongressteilnahmen und finanzielle Forschungsunterstützung von Almirall, Bayer Health Care, Biogen, Diamed, Genzyme, MedDay Pharmaceuticals, Merck Serono, Novartis, Novo Nordisk, ONO Pharma, Roche, Sanofi-Aventis, Chugai Pharma, QuintilesIMS und Teva. T. Ruck erhielt Reisekostenerstattungen von Merck Serono, finanzielle Forschungsunterstützung von Sanofi Genzyme und Novartis sowie Vortragshonorare von Sanofi Genzyme, Roche, Biogen, Merck und Teva. O. Aktas erhielt mit Genehmigung der Rektorin der Heinrich-Heine-Universität Honorare und Unterstützung für Beratung, Vorträge und wissenschaftliche Beiratstätigkeit von Almirall, Bayer, Biogen, Chugai, Medimmune, Novartis, Roche, Sanofi Genzyme und Teva. Diese Firmen erstatteten auch Reisekosten für Treffen dieser Beiräte. H.-P. Hartung erhielt mit Genehmigung der Rektorin der Heinrich-Heine-Universität Honorare für Beratung, Mitgliedschaft in Steering Committees und Data Monitoring Committees von Bayer, Biogen, Geneuro, Merck, Novartis, Receptos Celgene, Roche, Sanofi Genzyme und Teva. Diese Firmen erstatteten auch Reisekosten für Treffen dieser Committees.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meuth, S.G., Ruck, T., Aktas, O. et al. Cladribin-Tabletten. Nervenarzt 89, 895–907 (2018). https://doi.org/10.1007/s00115-018-0498-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-018-0498-0

Schlüsselwörter

Keywords

Navigation