Skip to main content
Log in

Epilepsie – neue Diagnostik, alte Medikamente?

Die Konsequenzen der Epilepsiegenetik

Epilepsy—new diagnostic tools, old drugs?

Therapeutic consequences of epilepsy genetics

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Epilepsiegenetik hat in den letzten Jahren Fortschritte gemacht, sodass vor allem bei schwereren Epilepsiesyndromen oft die Ätiologie der Erkrankung geklärt werden kann. Dennoch wird ihr Nutzen teilweise infrage gestellt, da viele der molekulargenetischen Befunde nicht zu einer Therapieanpassung und damit zu einer Verbesserung der Prognose führen. Zusätzlich wird die Interpretation der Untersuchungsergebnisse durch den Anteil von Befunden unklarer Signifikanz erschwert.

Ziel der Arbeit

In der vorliegenden Arbeit werden die Argumente für eine breite genetische Diagnostik bei Kindern mit Epilepsien vorgestellt. Verschiedene genetische Erkrankungen werden skizziert, bei denen eine molekulargenetische Diagnose direkte therapeutische Konsequenzen hat. Der indirekte Nutzen einer Diagnosesicherung, ob durch Vermeidung unnötiger Untersuchungen, Abschätzung des Wiederholungsrisikos oder psychische Entlastung der betreuenden Personen, ist ebenfalls zu nennen.

Schlussfolgerung

Trotz noch weniger relevanter therapeutischer Neuerungen überwiegen die Vorteile einer breiten epilepsiegenetischen Diagnostik

Abstract

Background

Recent advances in the field of epilepsy genetics have led to an increased fraction of patients with epilepsies where the etiology of the disease could be identified. Nevertheless, there is some criticism regarding the use of epilepsy genetics because in many cases the identification of a pathogenetic mutation does not lead to an adaptation of therapy or to an improved prognosis. In addition, the interpretation of genetic results might be complicated due to the considerable numbers of variants of unclear significance.

Objective

This publication presents the arguments in favour of a broad use of genetic investigations for children with epilepsies. Several diseases where a genetic diagnosis does in fact have direct therapeutic consequences are mentioned. In addition, the indirect impact of an established etiology, encompassing the avoidance of unnecessary diagnostic measures, possibility of genetic counselling, and the easing of the psychologic burden for the caregivers, should not be underestimated.

Conclusion

The arguments in favour of broad genetic diagnostics prevail notwithstanding the lack of relevant new developments regarding the therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Bechi G, Scalmani P, Schiavon E et al (2012) Pure haploinsufficiency for Dravet syndrome Na(V)1.1 (SCN1A) sodium channel truncating mutations. Epilepsia 53(1):87–100. https://doi.org/10.1111/j.1528-1167.2011.03346.x

    Article  CAS  PubMed  Google Scholar 

  2. Brockmann K (2009) The expanding phenotype of GLUT1-deficiency syndrome. Brain Dev 31(7):545–552. https://doi.org/10.1016/j.braindev.2009.02.008

    Article  PubMed  Google Scholar 

  3. Brodie MJ, Sills GJ (2011) Combining antiepileptic drugs—rational polytherapy? Seizure 20(5):369–375. https://doi.org/10.1016/j.seizure.2011.01.004

    Article  PubMed  Google Scholar 

  4. Catterall WA (2012) Sodium channel mutations and epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (Hrsg) Jasper’s basic mechanisms of the epilepsies. Oxford University Press, Bethesda

    Google Scholar 

  5. Chiron C, Marchand MC, Tran A et al (2000) Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. STICLO study group. Lancet 356(9242):1638–1642. https://doi.org/10.1016/S0140-6736(00)03157-3

    Article  CAS  PubMed  Google Scholar 

  6. Devinsky O, Cross JH, Laux L et al (2017) Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med 376(21):2011–2020. https://doi.org/10.1056/NEJMoa1611618

    Article  CAS  PubMed  Google Scholar 

  7. Dravet C (2011) The core Dravet syndrome phenotype. Epilepsia 52(Suppl 2):3–9. https://doi.org/10.1111/j.1528-1167.2011.02994.x

    Article  PubMed  Google Scholar 

  8. Epi KC (2012) Epi4K: gene discovery in 4,000 genomes. Epilepsia 53(8):1457–1467. https://doi.org/10.1111/j.1528-1167.2012.03511.x

    Article  Google Scholar 

  9. Fallah A, Rodgers SD, Weil AG et al (2015) Resective epilepsy surgery for tuberous sclerosis in children: determining predictors of seizure outcomes in a multicenter retrospective cohort study. Neurosurgery 77(4):517–524. https://doi.org/10.1227/NEU.0000000000000875 (discussion 524)

    Article  PubMed  Google Scholar 

  10. Ferraro L, Pollard JR, Helbig I (2016) Attitudes toward epilepsy genetics testing among adult and pediatric epileptologists-results of a Q-PULSE survey. Epilepsy Curr 16(1):46–47. https://doi.org/10.5698/1535-7597-16.1.46

    Article  PubMed  PubMed Central  Google Scholar 

  11. Franz DN, Belousova E, Sparagana S et al (2013) Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 381(9861):125–132. https://doi.org/10.1016/S0140-6736(12)61134-9

    Article  CAS  PubMed  Google Scholar 

  12. French JA, Lawson JA, Yapici Z et al (2016) Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 388(10056):2153–2163. https://doi.org/10.1016/S0140-6736(16)31419-2

    Article  CAS  PubMed  Google Scholar 

  13. Hammer MF, Wagnon JL, Mefford HC et al (2016) SCN8A-related epilepsy with encephalopathy. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K (Hrsg) GeneReviews(R). University of Washington, Seattle

    Google Scholar 

  14. Howell KB, Mcmahon JM, Carvill GL et al (2015) SCN2A encephalopathy: a major cause of epilepsy of infancy with migrating focal seizures. Neurology 85:958–966. https://doi.org/10.1212/WNL.0000000000001926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jozwiak S, Kotulska K, Domanska-Pakiela D et al (2011) Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur J Paediatr Neurol 15(5):424–431. https://doi.org/10.1016/j.ejpn.2011.03.010

    Article  PubMed  Google Scholar 

  16. Leen WG, Wevers RA, Kamsteeg EJ et al (2013) Cerebrospinal fluid analysis in the workup of GLUT1 deficiency syndrome: a systematic review. JAMA Neurol 70(11):1440–1444. https://doi.org/10.1001/jamaneurol.2013.3090

    Article  PubMed  Google Scholar 

  17. Lemke JR, Lal D, Reinthaler EM et al (2013) Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 45(9):1067–1072. https://doi.org/10.1038/ng.2728

    Article  CAS  PubMed  Google Scholar 

  18. Lotte J, Haberlandt E, Neubauer B et al (2012) Bromide in patients with SCN1A-mutations manifesting as Dravet syndrome. Neuropediatrics 43(01):17–21. https://doi.org/10.1055/s-0032-1307454

    Article  CAS  PubMed  Google Scholar 

  19. Mctague A, Howell KB, Cross JH et al (2016) The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol 15(3):304–316. https://doi.org/10.1016/S1474-4422(15)00250-1

    Article  PubMed  Google Scholar 

  20. Moller RS, Dahl HA, Helbig I (2015) The contribution of next generation sequencing to epilepsy genetics. Expert Rev Mol Diagn 15(12):1531–1538. https://doi.org/10.1586/14737159.2015.1113132

    Article  PubMed  Google Scholar 

  21. Okeke JO, Tangel VE, Sorge ST et al (2014) Genetic testing preferences in families containing multiple individuals with epilepsy. Epilepsia 55(11):1705–1713. https://doi.org/10.1111/epi.12810

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pierson TM, Yuan H, Marsh ED et al (2014) GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol 1(3):190–198. https://doi.org/10.1002/acn3.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rahman S, Footitt EJ, Varadkar S et al (2013) Inborn errors of metabolism causing epilepsy. Dev Med Child Neurol 55(1):23–36. https://doi.org/10.1111/j.1469-8749.2012.04406.x

    Article  PubMed  Google Scholar 

  24. Rauchenzauner M, Klepper J, Leiendecker B et al (2008) The ketogenic diet in children with Glut1 deficiency syndrome and epilepsy. J Pediatr 153(5):716–718. https://doi.org/10.1016/j.jpeds.2008.05.012

    Article  PubMed  Google Scholar 

  25. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schmitt BK (2014) AWMF Leitlinie: Therapie der Blitz-Nick-Salaam Epilepsie (West-Syndrom). AWMF. http://www.awmf.org/uploads/tx_szleitlinien/022-022k_S3_Blitz_Nick_Salaam_Epilespie_2014-10.pdf. Zugegriffen: 15.07.2017

    Google Scholar 

  27. Schoonjans A, Paelinck BP, Marchau F et al (2017) Low-dose fenfluramine significantly reduces seizure frequency in Dravet syndrome: a prospective study of a new cohort of patients. Eur J Neurol 24(2):309–314. https://doi.org/10.1111/ene.13195

    Article  CAS  PubMed  Google Scholar 

  28. Schulze A (2013) Creatine deficiency syndromes. Handb Clin Neurol 113:1837–1843. https://doi.org/10.1016/B978-0-444-59565-2.00053-8

    Article  PubMed  Google Scholar 

  29. Skjei KL, Church EW, Harding BN et al (2015) Clinical and histopathological outcomes in patients with SCN1A mutations undergoing surgery for epilepsy. J Neurosurg Pediatr 16(6):668–674. https://doi.org/10.3171/2015.5.PEDS14551

    Article  PubMed  Google Scholar 

  30. Specchio N, Terracciano A, Trivisano M et al (2013) PRRT2 is mutated in familial and non-familial benign infantile seizures. Eur J Paediatr Neurol 17(1):77–81. https://doi.org/10.1016/j.ejpn.2012.07.006

    Article  PubMed  Google Scholar 

  31. Steinlein OK, Mulley JC, Propping P et al (1995) A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 11(2):201–203. https://doi.org/10.1038/ng1095-201

    Article  CAS  PubMed  Google Scholar 

  32. Suls A, Mullen SA, Weber YG et al (2009) Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol 66(3):415–419. https://doi.org/10.1002/ana.21724

    Article  CAS  PubMed  Google Scholar 

  33. Valente P, Castroflorio E, Rossi P et al (2016) PRRT2 is a key component of the ca(2+)-dependent neurotransmitter release machinery. Cell Rep 15(1):117–131. https://doi.org/10.1016/j.celrep.2016.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Von Spiczak S, Weber Y (2017) Empfehlungen der Arbeitsgemeinschaft Genetik der Deutschen Gesellschaft für Epileptologie (DGfE)

    Google Scholar 

  35. Von Stulpnagel C, Ensslen M, Moller RS et al (2017) Epilepsy in patients with GRIN2A alterations: genetics, neurodevelopment, epileptic phenotype and response to anticonvulsive drugs. Eur J Paediatr Neurol 21(3):530–541. https://doi.org/10.1016/j.ejpn.2017.01.001

    Article  Google Scholar 

  36. Weber YG, Storch A, Wuttke TV et al (2008) GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest 118(6):2157–2168. https://doi.org/10.1172/JCI34438

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wolff M, Johannesen KM, Hedrich UB et al (2017) Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 140(5):1316–1366. https://doi.org/10.1093/brain/awx054

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Borggraefe.

Ethics declarations

Interessenkonflikt

I. Borggräfe hat Honorarvorträge für die Firmen Desitin und Novartis gehalten und war als Berater („advisory boards“) für Desitin, UCB und Bial tätig. T. Roser hat Honorarvorträge für die Firma Novartis gehalten. M. Tacke hat Honorarvorträge für Desitin gehalten. L. Gerstl hat Honorarvorträge für Desitin gehalten. B.A. Neubauer war als Berater („advisory boards“) für UCB, Eisai und Zogenix tätig. J. Rémi hat Vorträge für UCB, Desitin, Eisai und VANDA gehalten und war als Berater („advisory boards“) für UCB und VANDA tätig.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tacke, M., Neubauer, B.A., Gerstl, L. et al. Epilepsie – neue Diagnostik, alte Medikamente?. Nervenarzt 88, 1385–1394 (2017). https://doi.org/10.1007/s00115-017-0427-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-017-0427-7

Schlüsselwörter

Keywords

Navigation