Skip to main content
Log in

Psychotrauma als Risiko für spätere psychische Störungen

Epigenetische Mechanismen

Psychological trauma as risk for delayed psychiatric disorders

Epigenetic mechanisms

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Psychotraumata gelten als Risikofaktor für die Entwicklung einer Reihe psychiatrischer Störungen. Obwohl 40–90 % der Bevölkerung im Laufe ihres Lebens einem traumatischen Ereignis ausgesetzt sind, kommt es nur bei einem Teil zur Entwicklung von Erkrankungen. In den letzten Jahren sind zahlreiche Studien erschienen, die epigenetische Veränderungen, wie DNA-Methylierung, Histonmodifikation oder nichtkodierende RNAs, als biologische Mechanismen beschreiben, durch die die Umwelt z. B. in Form von Traumata, langfristige Effekte auf einen Organismus haben kann.

Methoden und Ergebnisse

Die vorliegende Arbeit soll die sich häufenden Hinweise für die Beteiligung epigenetischer Faktoren an der Entstehung psychiatrischer Erkrankungen, die mit Psychotraumata assoziiert sind, aufzeigen. Im klinischen Fokus steht dabei die posttraumatische Belastungsstörung (PTSD), bei der das Trauma einen Teil der diagnostischen Kriterien darstellt. Die Arbeit setzt sich in diesem Zusammenhang vor allem mit Studien auseinander, die trauma- und krankheitsassoziierte epigenetische Veränderungen im Menschen und im Tiermodell zeigen konnten. Sowohl gewebespezifische als auch Effekte mit Auswirkungen auf den gesamten Organismus wurden beschrieben und unterstreichen die globalen Folgen von Psychotraumata. Darüber hinaus sollen mögliche epigenetische Mechanismen dargestellt werden, die für die lang anhaltenden Effekte von Gen-Umwelt-Interaktionen bei psychiatrischen Erkrankungen verantwortlich sein könnten. Schließlich wird darauf eingegangen wie ein besseres Verständnis dieser epigenetischen Mechanismen Wege für mögliche zukünftige pharmakologische und psychotherapeutische Behandlungsansätze aufzeigen könnte.

Summary

Background

Psychological trauma is considered to be a risk factor for the development of a number of psychiatric disorders. Although 40–90 % of the population is exposed to a traumatic event in their lifetime, only a small fraction of individuals will develop a disorder. In recent years, numerous studies described epigenetic changes, such as DNA methylation, histone modifications and non-coding RNA as potential biological mechanisms by which the environment can have long-term effects on an organism.

Methods and results

This article reviews the accumulating evidence for the involvement of epigenetic factors in the development of psychiatric disorders associated with psychological trauma. Clinically the review focuses on posttraumatic stress disorder (PTSD) for which trauma is a diagnostic criterion. In this context, we specifically focus on studies that show trauma and disease-associated epigenetic changes in humans and animal models. Both tissue-specific as well as cross-tissue effects have been described and underline the global consequences of psychological trauma on the whole organism. In addition, possible epigenetic mechanisms are presented which could be responsible for the long-lasting effects of gene-environment interactions in psychiatric disorders. Finally, the review addresses how a better understanding of these epigenetic mechanisms could suggest avenues for possible future pharmacological and psychotherapeutic treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Binder EB, Bradley RG, Liu W et al (2008) Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 299(11):1291–1305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Binder EB (2009) The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 34(Suppl 1):186–195

    Article  Google Scholar 

  3. Borghol N, Suderman M, McArdle W et al (2012) Associations with early-life socio-economic position in adult DNA methylation. Int J Epidemiol 41(1):62–74

    Article  PubMed Central  PubMed  Google Scholar 

  4. Breslau N (2001) The epidemiology of posttraumatic stress disorder: what is the extent of the problem? J Clin Psychiatry 62(Suppl 17):16–22

    PubMed  Google Scholar 

  5. Danese A, Tan M (2014) Childhood maltreatment and obesity: systematic review and meta-analysis. Mol Psychiatry 19(5):544–554

    Article  CAS  PubMed  Google Scholar 

  6. Danese A, McEwen BS (2012) Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol Behav 106(1):29–39

    Article  CAS  PubMed  Google Scholar 

  7. Davies MN, Volta M, Pidsley R et al (2012) Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 13(6):R43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kloet ER de, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6(6):463–475

    Article  PubMed  Google Scholar 

  9. Essex MJ, Boyce WT, Hertzman C (2013) Epigenetic vestiges of early developmental adversity: childhood stress exposure and DNA methylation in adolescence. Child Dev 84(1):58–75

    Article  PubMed Central  PubMed  Google Scholar 

  10. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114

    Article  CAS  PubMed  Google Scholar 

  11. Heim C, Nemeroff CB (2001) The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 49(12):1023–1039

    Article  CAS  PubMed  Google Scholar 

  12. Holz NE, Buchmann AF, Boecker R et al (2014) Role of FKBP5 in emotion processing: results on amygdala activity, connectivity and volume. Brain Struct Funct [Epub ahead of print]

  13. Ising M, Depping AM, Siebertz A et al (2008) Polymorphisms in the FKBP5 gene region modulate recovery from psychosocial stress in healthy controls. Eur J Neurosci 28(2):389–398

    Article  PubMed  Google Scholar 

  14. Kessler RC, Sonnega A, Bromet E et al (1995) Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry 52(12):1048–1060

    Article  CAS  PubMed  Google Scholar 

  15. Klengel T, Mehta D, Anacker C et al (2013) Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci 16(1):33–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Klengel T, Pape J, Binder EB et al (2014) The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology 80:115–132

    Article  CAS  PubMed  Google Scholar 

  17. Koenen KC, Uddin M, Chang SC et al (2011) SLC6A4 methylation modifies the effect of the number of traumatic events on risk for posttraumatic stress disorder. Depress Anxiety 28(8):639–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Labonte B, Yerko V, Gross J et al (2012) Differential glucocorticoid receptor exon 1(B), 1(C), and 1(H) expression and methylation in suicide completers with a history of childhood abuse. Biol Psychiatry 72(1):41–48

    Article  CAS  PubMed  Google Scholar 

  19. Labonte B, Azoulay N, Yerko V et al (2014) Epigenetic modulation of glucocorticoid receptors in posttraumatic stress disorder. Transl Psychiatry 4:e368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Levenson JM, Roth TL, Lubin FD et al (2006) Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 281(23):15763–15773

    Article  CAS  PubMed  Google Scholar 

  21. McGowan PO, Sasaki A, D’Alessio AC et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12(3):342–348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Meaney MJ (2010) Epigenetics and the biological definition of gene x environment interactions. Child Dev 81(1):41–79

    Article  PubMed  Google Scholar 

  23. Mehta D, Binder EB (2012) Gene x environment vulnerability factors for PTSD: the HPA-axis. Neuropharmacology 62(2):654–662

    Article  CAS  PubMed  Google Scholar 

  24. Mehta D, Klengel T, Conneely KN et al (2013) Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder. Proc Natl Acad Sci U S A 110(20):8302–8307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Miller DB, O’Callaghan JP (2005) Aging, stress and the hippocampus. Ageing Res Rev 4(2):123–140

    Article  CAS  PubMed  Google Scholar 

  26. Miller GE, Chen E, Fok AK et al (2009) Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc Natl Acad Sci U S A 106(34):14716–14721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Murgatroyd C, Spengler D (2010) Histone tales: echoes from the past, prospects for the future. Genome Biol 11(2):105

    Article  PubMed Central  PubMed  Google Scholar 

  28. Newton-Cheh C, Hirschhorn JN (2005) Genetic association studies of complex traits: design and analysis issues. Mutat Res 573(1–2):54–69

  29. Ouellet-Morin I, Wong CC, Danese A et al (2013) Increased serotonin transporter gene (SERT) DNA methylation is associated with bullying victimization and blunted cortisol response to stress in childhood: a longitudinal study of discordant monozygotic twins. Psychol Med 43(9):1813–1823

    Article  CAS  PubMed  Google Scholar 

  30. Provencal N, Suderman MJ, Guillemin C et al (2012) The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. J Neurosci 32(44):15626–15642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ressler KJ, Mercer KB, Bradley B et al (2012) Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature 470(7335):492–497. http://www.ncbi.nlm.nih.gov/pubmed/21350482

  32. Sartor CE, Grant JD, Lynskey MT (2012) Common heritable contributions to low-risk trauma, high-risk trauma, posttraumatic stress disorder, and major depression. Arch Gen Psychiatry 69(3):293–299

    Article  PubMed Central  PubMed  Google Scholar 

  33. Smith AK, Conneely KN, Kilaru V et al (2011) Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder. Am J Med Genet B Neuropsychiatr Genet 156B(6):700–708

    Article  PubMed Central  PubMed  Google Scholar 

  34. Suderman M, Borghol N, Pappas JJ et al (2014) Childhood abuse is associated with methylation of multiple loci in adult DNA. BMC Med Genomics 7:13

    Article  PubMed Central  PubMed  Google Scholar 

  35. Uddin M, Aiello AE, Wildman DE et al (2010) Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc Natl Acad Sci U S A 107(20):9470–9475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wang D, Szyf M, Benkelfat C et al (2012) Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression. PLoS One 7(6):e39501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Weaver IC, Diorio J, Seckl JR et al (2004) Early environmental regulation of hippocampal glucocorticoid receptor gene expression: characterization of intracellular mediators and potential genomic target sites. Ann N Y Acad Sci 1024:182–212

    Article  CAS  PubMed  Google Scholar 

  38. Weaver IC, D’Alessio AC, Brown SE et al (2007) The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: altering epigenetic marks by immediate-early genes. J Neurosci 27(7):1756–1768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Xie W, Barr CL, Kim A et al (2012) Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell 148(4):816–831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Yehuda R und Bierer LM (2009) The relevance of epigenetics to PTSD: implications for the DSM-V. J Trauma Stress 22(5):427–434

    Article  PubMed Central  PubMed  Google Scholar 

  41. Yehuda R, Flory JD, Bierer LM et al (2014) Lower methylation of glucocorticoid receptor gene promoter 1 in peripheral blood of veterans with posttraumatic stress disorder. Biol Psychiatry [Epub ahead of print]

  42. Zovkic IB, Sweatt JD (2013) Epigenetic mechanisms in learned fear: implications for PTSD. Neuropsychopharmacology 38(1):77–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. J.C. Pape und E.B. Binder geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.B. Binder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pape, J., Binder, E. Psychotrauma als Risiko für spätere psychische Störungen. Nervenarzt 85, 1382–1389 (2014). https://doi.org/10.1007/s00115-014-4085-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-014-4085-8

Schlüsselwörter

Keywords

Navigation