Skip to main content

Advertisement

Log in

Simultane EEG-fMRT-Messungen

Ein Einblick in Anwendungsmöglichkeiten und Herausforderungen

Simultaneous EEG-fMRI measurements

Insights in applications and challenges

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Der Artikel stellt eine Einführung in den Bereich der simultanen Messung von Elektroenzephalographie (EEG) und funktioneller Magnetresonanztomographie (fMRT) dar, der in den letzten Jahren eine enorme Entwicklung erfahren hat.

Fragestellung

Die zugrunde liegende Idee der simultanen Messung ist es, die hervorragende zeitliche Auflösung des EEG mit der guten räumlichen Auflösung des fMRT zu kombinieren. Es werden der aktuelle Stand der Methode diskutiert und Perspektiven unter dem Aspekt der multimodalen Bildgebung aufgezeigt.

Material und Methode

Simultane EEG-fMRT-Messungen sind durch Gradientenartefakte und das kardioballistische Artefakt geprägt. Es werden verschiedene Artefaktkorrekturen vorgestellt, die nötig sind, um eine angemessene Datenqualität zu erhalten und wesentliche Punkte in der Planung und Durchführung einer kombinierten EEG-fMRT-Messung dargestellt. Anschließend werden unterschiedliche Möglichkeiten der Datenanalyse diskutiert.

Ergebnisse

Kombinierte EEG-fMRT-Messungen haben bereits zu unserem Verständnis über grundlegende Zusammenhänge von BOLD („blood oxygenation level-dependent“) -Antwort und EEG-Signal beigetragen und finden breite Anwendung in experimentellen Paradigmen. Die simultanen Messungen sind ein wesentlicher Baustein multimodaler Bildgebungsansätze zur Erforschung grundlegender physiologischer Verarbeitungsmechanismen des Gehirns sowie über störungsspezifische Defizite.

Schlussfolgerungen

Aktuelle Entwicklungen in der multimodalen Bildgebung sind die Kombination von elektrophysiologischen Parametern und MR-Parametern im Bereich des Ultra-high-field-MRT sowie die Kombination mit der Positronenemissionstomographie (PET) in einem trimodalen Ansatz.

Summary

Background

The following article presents an introduction to simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) measurements which have undergone a huge development during the last few years.

Objectives

The idea behind combining both non-invasive methods is to join the excellent temporal resolution of EEG (ms) together with the superior spatial resolution of fMRI (mm). In this article the status quo of the method and perspectives regarding multimodal imaging are discussed.

Material and methods

Simultaneous EEG-fMRI measurements are affected by scanner and cardioballistic artifacts. We present common artifact subtraction methods in order to achieve a feasible data quality and outline what to consider when planning and recording EEG and fMRI simultaneously. Moreover, we discuss different analysis strategies.

Results

Combined EEG-fMRI measurements have already increased our knowledge about the underlying relationships between the blood oxygenation level-dependent (BOLD) response and the EEG signal and are applied to answer widespread research questions. Simultaneous measurements are an essential part of multimodal imaging in investigating the underlying processing mechanisms of the brain as well as in advancing our understanding of neuropsychiatric diseases.

Conclusions

Current developments in multimodal imaging focus on the combination of electrophysiological and MRI parameters within ultra-high field MRI as well as on positron emission tomography (PET) in a trimodal approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12:230–239

    Article  CAS  PubMed  Google Scholar 

  2. Allen PJ, Polizzi G, Krakow K et al (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8:229–239

    Article  CAS  PubMed  Google Scholar 

  3. Balsters JH, O’connell RG, Martin MP et al (2011) Donepezil impairs memory in healthy older subjects: behavioural, EEG and simultaneous EEG/fMRI biomarkers. PLoS One 6:e24126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Benar CG, Schon D, Grimault S et al (2007) Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI. Hum Brain Mapp 28:602–613

    Article  PubMed  Google Scholar 

  5. Bojak I, Oostendorp TF, Reid AT et al (2011) Towards a model-based integration of co-registered electroencephalography/functional magnetic resonance imaging data with realistic neural population meshes. Philos Trans A Math Phys Eng Sci 369:3785–3801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bonmassar G, Schwartz DP, Liu AK et al (2001) Spatiotemporal brain imaging of visual-evoked activity using interleaved EEG and fMRI recordings. Neuroimage 13:1035–1043

    Article  CAS  PubMed  Google Scholar 

  7. Crottaz-Herbette S, Menon V (2006) Where and when the anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence. J Cogn Neurosci 18:766–780

    Article  CAS  PubMed  Google Scholar 

  8. De Munck JC, Van Houdt PJ, Goncalves SI et al (2013) Novel artefact removal algorithms for co-registered EEG/fMRI based on selective averaging and subtraction. Neuroimage 64:407–415

    Article  Google Scholar 

  9. De Vos M, Zink R, Hunyadi B et al (2013) The quest for single trial correlations in multimodal EEG-fMRI data. Conf Proc IEEE Eng Med Biol Soc 2013:6027–6030

    Google Scholar 

  10. Debener S, Ullsperger M, Siegel M et al (2006) Single-trial EEG-fMRI reveals the dynamics of cognitive function. Trends Cogn Sci 10:558–563

    Article  PubMed  Google Scholar 

  11. Eichele T, Calhoun VD, Moosmann M et al (2008) Unmixing concurrent EEG-fMRI with parallel independent component analysis. Int J Psychophysiol 67:222–234

    Article  PubMed Central  PubMed  Google Scholar 

  12. Engell AD, Huettel S, Mccarthy G (2012) The fMRI BOLD signal tracks electrophysiological spectral perturbations, not event-related potentials. Neuroimage 59:2600–2606

    Article  PubMed Central  PubMed  Google Scholar 

  13. Herrmann CS, Debener S (2008) Simultaneous recording of EEG and BOLD responses: a historical perspective. Int J Psychophysiol 67:161–168

    Article  PubMed  Google Scholar 

  14. Horovitz SG, Rossion B, Skudlarski P et al (2004) Parametric design and correlational analyses help integrating fMRI and electrophysiological data during face processing. Neuroimage 22:1587–1595

    Article  PubMed  Google Scholar 

  15. Huster RJ, Debener S, Eichele T et al (2012) Methods for simultaneous EEG-fMRI: an introductory review. J Neurosci 32:6053–6060

    Article  CAS  PubMed  Google Scholar 

  16. Jorge J, Van Der Zwaag W, Figueiredo P (2013) EEG-fMRI integration for the study of human brain function. Neuroimage

  17. Krakow K, Allen PJ, Lemieux L et al (2000) Methodology: EEG-correlated fMRI. Adv Neurol 83:187–201

    CAS  PubMed  Google Scholar 

  18. Laufs H (2012) A personalized history of EEG-fMRI integration. Neuroimage 62:1056–1067

    Article  PubMed  Google Scholar 

  19. Lei X, Qiu C, Xu P et al (2010) A parallel framework for simultaneous EEG/fMRI analysis: methodology and simulation. Neuroimage 52:1123–1134

    Article  PubMed  Google Scholar 

  20. Liebenthal E, Ellingson ML, Spanaki MV et al (2003) Simultaneous ERP and fMRI of the auditory cortex in a passive oddball paradigm. Neuroimage 19:1395–1404

    Article  PubMed  Google Scholar 

  21. Logothetis NK, Pauls J, Augath M et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  PubMed  Google Scholar 

  22. Mullinger KJ, Havenhand J, Bowtell R (2013) Identifying the sources of the pulse artefact in EEG recordings made inside an MR scanner. Neuroimage 71:75–83

    Article  PubMed Central  PubMed  Google Scholar 

  23. Neuner I, Arrubla J, Felder J et al (2013) Simultaneous EEG-fMRI acquisition at low, high and ultra-high magnetic fields up to 9.4T: perspectives and challenges. Neuroimage

  24. Neuner I, Arrubla J, Werner CJ et al (2014) The default mode network and EEG regional spectral power: a simultaneous fMRI-EEG study. PLoS One 9:e88214

    Article  PubMed Central  PubMed  Google Scholar 

  25. Patel MR, Blum A, Pearlman JD et al (1999) Echo-planar functional MR imaging of epilepsy with concurrent EEG monitoring. AJNR Am J Neuroradiol 20:1916–1919

    CAS  PubMed  Google Scholar 

  26. Regenbogen C, De Vos M, Debener S et al (2012) Auditory processing under cross-modal visual load investigated with simultaneous EEG-fMRI. PLoS One (ok (open Access)

  27. Sadeh B, Zhdanov A, Podlipsky I et al (2008) The validity of the face-selective ERP N170 component during simultaneous recording with functional MRI. Neuroimage 42:778–786

    Article  PubMed  Google Scholar 

  28. Scheeringa R, Bastiaansen MC, Petersson KM et al (2008) Frontal theta EEG activity correlates negatively with the default mode network in resting state. Int J Psychophysiol 67:242–251

    Article  PubMed  Google Scholar 

  29. Shah NJ, Oros-Peusquens AM, Arrubla J et al (2013) Advances in multimodal neuroimaging: hybrid MR-PET and MR-PET-EEG at 3T and 9.4T. J Magn Reson 229:101–115

    Article  CAS  PubMed  Google Scholar 

  30. Vaudano AE, Avanzini P, Tassi L et al (2013) Causality within the epileptic network: an EEG-fMRI study validated by intracranial EEG. Front Neurol 4:185

    PubMed Central  PubMed  Google Scholar 

Download references

Danksagung

Diese Studie wurde durch die Deutsche Forschungsgemeinschaft (DFG, IRTG 1328, DFG SH 79/2-2) gefördert.

Einhaltung ethischer Richtlinien

Interessenkonflikt. B. Reese, U. Habel und I. Neuner geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Neuner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reese, B., Habel, U. & Neuner, I. Simultane EEG-fMRT-Messungen. Nervenarzt 85, 671–679 (2014). https://doi.org/10.1007/s00115-014-4012-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-014-4012-z

Schlüsselwörter

Keywords

Navigation