Skip to main content
Log in

Diagnostik und Verlaufsbeurteilung der Multiplen Sklerose

Stellenwert der optischen Kohärenztomographie

Diagnosis and monitoring of multiple sclerosis

The value of optical coherence tomography

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Neben der Schubaktivität und dem neurologischen Untersuchungsbefund spielt die magnetresonanztomographische (MRT-)Bildgebung bei der Verlaufsbeurteilung der Multiplen Sklerose (MS) derzeit eine Schlüsselrolle. Letztere ist jedoch zeit- und kostenintensiv und selbst in Deutschland nicht immer kurzfristig verfügbar. Vor allem diskriminiert das Routine-MRT aber nur unzureichend zwischen Demyelinisierung und Neurodegeneration und weist eine Diskrepanz zwischen Läsionslast und Behinderungsgrad auf. Die optische Kohärenztomographie (OCT) ist eine in der Ophthalmologie inzwischen gut validierte, nichtinvasive Methode zur Darstellung und Quantifizierung neurodegenerativer Prozesse der Retina, wie sie auch bei der MS und zahlreichen anderen neurologischen Erkrankungen auftreten. Darüber hinaus ist die OCT-Untersuchung im klinisch-ophthalmologischen Einsatz kostengünstig, mit geringem Zeitaufwand durchführbar, gut reproduzierbar und für den Patienten nicht belastend, mithin ideale Voraussetzungen für eine Anwendung als Verlaufsparameter bei neurologischen Erkrankungen. In dieser Übersicht werden die Hintergründe der OCT-Technik und ihre Bedeutung für die Diagnostik und Verlaufsevaluation der MS vorgestellt.

Summary

Besides the relapse rate and neurological examination, magnetic resonance imaging (MRI) plays a key role in multiple sclerosis (MS) monitoring. However, MRI is costly and even in Germany not always readily available. Additionally, routine MRI scans are not sensitive enough regarding differentiation between demyelination and neurodegeneration and show a discrepancy between lesion load and the degree of disability. In contrast, optical coherence tomography (OCT) is a validated non-invasive method for the quantification of neurodegenerative processes in the retina, as they appear in MS and other neurological diseases. The OCT is inexpensive, easy to handle and highly reproducible. Additionally, it is well tolerated and thus represents a promising tool for monitoring of neurodegenerative disorders. This article describes in detail the OCT technique and its usefulness for both diagnosis and monitoring of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Fercher AF, Mengedoht K, Werner W (1988) Eye-length measurement by interferometry with partially coherent light. Opt Lett 13:186–188

    Article  PubMed  CAS  Google Scholar 

  2. Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181

    Article  PubMed  CAS  Google Scholar 

  3. Velthoven MEJ van, Faber DJ, Verbraak FD et al (2007) Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res 26:57–77

    Article  PubMed  Google Scholar 

  4. Becker M, Masterson K, Delavelle J et al (2010) Imaging of the optic nerve. Eur J Radiol 74:299–313

    Article  PubMed  Google Scholar 

  5. Gass A, Barker GJ, MacManus D et al (1995) High resolution magnetic resonance imaging of the anterior visual pathway in patients with optic neuropathies using fast spin echo and phased array local coils. J Neurol Neurosurg Psychiatry 58:562–569

    Article  PubMed  CAS  Google Scholar 

  6. Hood DC, Kardon RH (2007) A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res 26:688–710

    Article  PubMed  Google Scholar 

  7. Wolf-Schnurrbusch UEK, Ceklic L, Brinkmann CK et al (2009) Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci 50:3432–3437

    Article  PubMed  Google Scholar 

  8. Bock M, Brandt AU, Dörr J et al (2010) Time domain and spectral domain optical coherence tomography in multiple sclerosis: a comparative cross-sectional study. Mult Scler 16:893–896

    Article  PubMed  Google Scholar 

  9. Warner CV, Syc SB, Stankiewicz AM et al (2011) The impact of utilizing different optical coherence tomography devices for clinical purposes and in multiple sclerosis trials. PLoS ONE 6:e22947

    Article  PubMed  CAS  Google Scholar 

  10. Tewarie P, Balk L, Costello F et al (2012) The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS ONE 7:e34823

    Article  PubMed  CAS  Google Scholar 

  11. Balcer LJ (2006) Clinical practice. Optic neuritis. N Engl J Med 354:1273–1280

    Article  PubMed  CAS  Google Scholar 

  12. Söderström M, Ya-Ping J, Hillert J, Link H (1998) Optic neuritis: prognosis for multiple sclerosis from MRI, CSF, and HLA findings. Neurology 50:708–714

    Article  PubMed  Google Scholar 

  13. Tátrai E, Simó M, Iljicsov A et al (2012) In vivo evaluation of retinal neurodegeneration in patients with multiple sclerosis. PLoS ONE 7:e30922

    Article  PubMed  Google Scholar 

  14. Costello F (2011) Evaluating the use of optical coherence tomography in optic neuritis. Mult Scler Int 2011:148394

    PubMed  Google Scholar 

  15. Costello F, Hodge W, Pan YI et al (2010) Using retinal architecture to help characterize multiple sclerosis patients. Can J Ophthalmol 45:520–526

    Article  PubMed  Google Scholar 

  16. Henderson APD, Trip SA, Schlottmann PG et al (2008) An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography. Brain 131:277–287

    PubMed  Google Scholar 

  17. Oberwahrenbrock T, Schippling S, Ringelstein M et al (2012) Retinal damage in multiple sclerosis disease subtypes measured by high-resolution optical coherence tomography. Mult Scler Int 2012:1–10. DOI 10.1155/2012/530305 [Epub 2012 Jul 25]

    Article  Google Scholar 

  18. Young, Kim L (2012) Loss of retinal nerve fibre layer axons indicates white but not grey matter damage in early multiple sclerosis. Eur J Neurol (Im Druck)

  19. Trapp BD, Nave K-A (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  PubMed  CAS  Google Scholar 

  20. Kerrison JB, Flynn T, Green WR (1994) Retinal pathologic changes in multiple sclerosis. Retina (Philadelphia, Pa.) 14:445–451

  21. Green AJ, McQuaid S, Hauser SL et al (2010) Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain 133:1591–1601

    Article  PubMed  Google Scholar 

  22. Gelfand JM, Nolan R, Schwartz DM et al (2012) Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain 135:1786–1793

    Article  PubMed  Google Scholar 

  23. Saidha S, Sotirchos ES, Ibrahim MA et al (2012) Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol (im Druck)

  24. Galetta KM, Calabresi PA, Frohman EM, Balcer LJ (2011) Optical coherence tomography (OCT): imaging the visual pathway as a model for neurodegeneration. Neurother 8:117–132

    Article  Google Scholar 

  25. Lamirel C, Newman NJ, Biousse V (2010) Optical coherence tomography (OCT) in optic neuritis and multiple sclerosis. Rev Neurol (Paris) 166:978–986

    Google Scholar 

  26. Pulicken M, Gordon-Lipkin E, Balcer LJ et al (2007) Optical coherence tomography and disease subtype in multiple sclerosis. Neurology 69:2085–2092

    Article  PubMed  CAS  Google Scholar 

  27. Henderson APD, Altmann DR, Trip SA et al (2011) Early factors associated with axonal loss after optic neuritis. Ann Neurol 70:955–963

    Article  PubMed  Google Scholar 

  28. Henderson APD, Altmann DR, Trip AS et al (2010) A serial study of retinal changes following optic neuritis with sample size estimates for acute neuroprotection trials. Brain 133:2592–2602

    Article  PubMed  Google Scholar 

  29. Costello F, Coupland S, Hodge W et al (2006) Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 59:963–969

    Article  PubMed  Google Scholar 

  30. Costello F, Hodge W, Pan YI et al (2008) Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography. Mult Scler 14:893–905

    Article  PubMed  CAS  Google Scholar 

  31. Sühs K-W, Hein K, Sättler MB et al (2012) A randomized, double-blind, phase 2 study of erythropoietin in optic neuritis. Ann Neurol 72:199–210

    Article  PubMed  Google Scholar 

  32. Parisi V, Manni G, Spadaro M et al (1999) Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci 40:2520–2527

    PubMed  CAS  Google Scholar 

  33. Petzold A, Boer JF de, Schippling S et al (2010) Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 9:921–932

    Article  PubMed  Google Scholar 

  34. Bock M, Brandt AU, Dörr J et al (2010) Patterns of retinal nerve fiber layer loss in multiple sclerosis patients with or without optic neuritis and glaucoma patients. Clin Neurol Neurosurg 112:647–652

    Article  PubMed  Google Scholar 

  35. Gelfand JM, Goodin DS, Boscardin WJ et al (2012) Retinal axonal loss begins early in the course of multiple sclerosis and is similar between progressive phenotypes. PLoS ONE 7:e36847

    Article  PubMed  CAS  Google Scholar 

  36. Talman LS, Bisker ER, Sackel DJ et al (2010) Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol 67:749–760

    PubMed  Google Scholar 

  37. Serbecic N, Aboul-Enein F, Beutelspacher SC et al (2011) High resolution spectral domain optical coherence tomography (SD-OCT) in multiple sclerosis: the first follow up study over two years. PLoS ONE 6:e19843

    Article  PubMed  CAS  Google Scholar 

  38. Saidha S, Syc SB, Ibrahim MA et al (2011) Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 134:518–533

    Article  PubMed  Google Scholar 

  39. Bock M, Brandt AU, Kuchenbecker J et al (2012) Impairment of contrast visual acuity as a functional correlate of retinal nerve fibre layer thinning and total macular volume reduction in multiple sclerosis. Br J Ophthalmol 96:62–67

    Article  PubMed  Google Scholar 

  40. Fisher JB, Jacobs DA, Markowitz CE et al (2006) Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 113:324–332

    Article  PubMed  Google Scholar 

  41. Kanamori A, Escano MFT, Eno A et al (2003) Evaluation of the effect of aging on retinal nerve fiber layer thickness measured by optical coherence tomography. Ophthalmologica 217:273–278

    Article  PubMed  Google Scholar 

  42. Sriram P, Graham SL, Wang C et al (2012) Transsynaptic retinal degeneration in optic neuropathies: optical coherence tomography study. Invest Ophthalmol Vis Sci 53:1271–1275

    Article  PubMed  Google Scholar 

  43. Brandt AU, Oberwahrenbrock T, Ringelstein M et al (2011) Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 134:e193–194

    Article  PubMed  CAS  Google Scholar 

  44. Albrecht P, Ringelstein M, Müller A et al (2012) Degeneration of retinal layers in multiple sclerosis subtypes quantified by optical coherence tomography. Mult Scler 18:1422–1429

    Article  PubMed  CAS  Google Scholar 

  45. Costello F, Hodge W, Pan YI et al (2009) Differences in retinal nerve fiber layer atrophy between multiple sclerosis subtypes. J Neurol Sci 281:74–79

    Article  PubMed  Google Scholar 

  46. Siger M, Dziegielewski K, Jasek L et al (2008) Optical coherence tomography in multiple sclerosis: thickness of the retinal nerve fiber layer as a potential measure of axonal loss and brain atrophy. J Neurol 255:1555–1560

    Article  PubMed  Google Scholar 

  47. Gordon-Lipkin E, Chodkowski B, Reich DS et al (2007) Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 69:1603–1609

    Article  PubMed  CAS  Google Scholar 

  48. Dörr J, Wernecke KD, Bock M et al (2011) Association of retinal and macular damage with brain atrophy in multiple sclerosis. PLoS ONE 6:e18132

    Article  PubMed  Google Scholar 

  49. Frohman EM, Dwyer MG, Frohman T et al (2009) Relationship of optic nerve and brain conventional and non-conventional MRI measures and retinal nerve fiber layer thickness, as assessed by OCT and GDx: a pilot study. J Neurol Sci 282:96–105

    Article  PubMed  Google Scholar 

  50. Pfueller CF, Brandt AU, Schubert F et al (2011) Metabolic changes in the visual cortex are linked to retinal nerve fiber layer thinning in multiple sclerosis. PLoS ONE 6:e18019

    Article  PubMed  CAS  Google Scholar 

  51. Grazioli E, Zivadinov R, Weinstock-Guttman B et al (2008) Retinal nerve fiber layer thickness is associated with brain MRI outcomes in multiple sclerosis. J Neurol Sci 268:12–17

    Article  PubMed  Google Scholar 

  52. Sepulcre J, Murie-Fernandez M, Salinas-Alaman A et al (2007) Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS. Neurology 68:1488–1494

    Article  PubMed  Google Scholar 

  53. Saidha S, Sotirchos ES, Oh J et al (2012) Relationships between retinal axonal and neuronal measures and global central nervous system pathology in multiple sclerosis. Arch Neurol 1–10

  54. Whitwell JL, Crum WR, Watt HC, Fox NC (2001) Normalization of cerebral volumes by use of intracranial volume: implications for longitudinal quantitative MR imaging. Am J Neuroradiol 22:1483–1489

    PubMed  CAS  Google Scholar 

  55. Zimmermann H, Freing A, Kaufhold F et al (2012) Optic neuritis interferes with optical coherence tomography and magnetic resonance imaging correlations. Mult Scler (im Druck)

  56. Klistorner A, Arvind H, Nguyen T et al (2009) Multifocal VEP and OCT in optic neuritis: a topographical study of the structure-function relationship. Doc Ophthalmol 118:129–137

    Article  PubMed  Google Scholar 

  57. Naismith RT, Tutlam NT, Xu J et al (2009) Optical coherence tomography is less sensitive than visual evoked potentials in optic neuritis. Neurology 73:46–52

    Article  PubMed  CAS  Google Scholar 

  58. Stricker S, Oberwahrenbrock T, Zimmermann H et al (2011) Temporal retinal nerve fiber loss in patients with spinocerebellar ataxia type 1. PLoS ONE 6:e23024

    Article  PubMed  CAS  Google Scholar 

  59. Albrecht P, Müller A-K, Südmeyer M et al (2012) Optical coherence tomography in parkinsonian syndromes. PLoS ONE 7:e34891

    Article  PubMed  CAS  Google Scholar 

  60. Archibald NK, Clarke MP, Mosimann UP, Burn DJ (2011) Retinal thickness in Parkinson’s disease. Parkinsonism Relat Disord 17:431–436

    Article  PubMed  CAS  Google Scholar 

  61. Kaufhold F, Kadas EM, Schmidt C et al (2012) Optic nerve head quantification in idiopathic intracranial hypertension by spectral domain OCT. PLoS ONE 7:e36965

    Article  PubMed  CAS  Google Scholar 

  62. Martinez A, Proupim N, Sanchez M (2008) Retinal nerve fibre layer thickness measurements using optical coherence tomography in migraine patients. Br J Ophthalmol 92:1069–1075

    Article  PubMed  CAS  Google Scholar 

  63. Dörr J, Radbruch H, Bock M et al (2009) Encephalopathy, visual disturbance and hearing loss-recognizing the symptoms of Susac syndrome. Nat Rev Neurol 5:683–688

    Article  PubMed  Google Scholar 

  64. Dörr J, Jarius S, Wildemann B et al (2011) Susac syndrome: an interdisciplinary challenge. Nervenarzt 82:1250–1263

    Article  PubMed  Google Scholar 

  65. Brandt AU, Zimmermann H, Kaufhold F et al (2012) Patterns of retinal damage facilitate differential diagnosis between Susac Syndrome and MS. PLoS ONE 7:e38741

    Article  PubMed  CAS  Google Scholar 

  66. Ratchford JN, Quigg ME, Conger A et al (2009) Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology 73:302–308

    Article  PubMed  CAS  Google Scholar 

  67. Monteiro MLR, Fernandes DB, Apóstolos-Pereira SL, Callegaro D et al (2012) Quantification of retinal neural loss in patients with neuromyelitis optica and multiple sclerosis with or without optic neuritis using fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 53:3959–3966

    Article  PubMed  Google Scholar 

  68. Pfueller CF, Paul F (2011) Imaging the visual pathway in neuromyelitis optica. Mult Scler Int 2011:869814

    PubMed  Google Scholar 

  69. Sinnecker T, Dörr J, Pfueller CF et al (2012) Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology 79:708–714

    Article  PubMed  Google Scholar 

  70. Jarius S, Ruprecht K, Wildemann B et al (2012) Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J Neuroinflammation 9:14

    Article  PubMed  CAS  Google Scholar 

  71. Paul F, Jarius S, Aktas O et al (2007) Antibody to aquaporin 4 in the diagnosis of neuromyelitis optica. PLoS Med 4:e133

    Article  PubMed  Google Scholar 

  72. Search of: optical coherence tomography | „Multiple Sclerosis“ – List Results – ClinicalTrials.gov [Internet]. Available von: http://www.clinicaltrials.gov/ct2/results?term = optical + coherence + tomography&cond = %22Multiple + Sclerosis%22. Zugegriffen: 25.10.2012

  73. Dörr J, Ohlraun S, Skarabis H, Paul F (2012) Efficacy of vitamin D supplementation in multiple sclerosis (EVIDIMS Trial): study protocol for a randomized controlled trial. Trials 13:15

    Article  PubMed  Google Scholar 

Download references

Danksagung

Die in Abb. 1a verwendete histologische Darstellung der Retina wurde uns durch Dr. med. Andreas Winkelmann MSc. Institut für Vegetative Anatomie Centrum für Anatomie, Campus Charité Mitte, Charité – Universitätsmedizin Berlin, D-10117 Berlin zur Verfügung gestellt. Wir danken Susan Pikol für die exzellente logistische Unterstützung.

Interessenskonflikte

Der korrespondierende Autor weist für sich und seine Koautoren auf folgende Beziehungen hin: Markus Bock erhält Forschungsunterstützungen von „Das Myelin Projekt Deutschland e.V.“ und von der „Familie-Ernst-Wendt Stiftung“. Prof. Dr. med. Friedemann Paul ist aktiv im Steering Committee der OCTIMS-Studie (Novartis), erhält Forschungsunterstützung, Reisekostenunterstützung und Vortragshonorare von Teva, Sanofi Aventis, Bayer, Merck-Serono, Biogen, Novartis, Forschungsunterstützung von der Arthur Arnstein Stiftung und Reisekostenübernahme von der Guthy Jackson Charitable Foundation. Dr. med. Jan Dörr erhält finanzielle Unterstützung zu Forschungsprojekten von Novartis Pharma und Bayer Vital, erhielt Vortragshonorare von Novartis Pharma, Bayer Vital und TEVA und Reisekostenunterstützung von Novartis Pharma und Merck-Serono.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bock.

Zusatzmaterial online

115_2012_3707_MO1_ESM.mov

Video 1: En-face Scanüberlagerung des (peri)-papillären 2D-Fundusbildes mit dem korrespondierenden 3D-Würfelscan. Die Querschnittscanbilder stellen die retinalen Substrukuren entlang der z-Achse (axial) dar. (QuickTime mov 3,1MB)

115_2012_3707_MO2_ESM.mov

Video 2: Hochauflösender 3D-Würfelscan des (peri)-makulären Areals entlang der x-Achse in der schnellen B-Scan Ebene. (QuickTime mov 2,7MB)

115_2012_3707_MO3_ESM.mov

Video 3: Zwei hochauflösende 3D-Würfelscans des (peri)-papillären Areals zum Vergleich zwischen MS-Patient und Gesundem. Die Querschnittscanbilder stellen die retinalen Substrukuren entlang der y-Achse (langsame B-Scan Ebene) in temporal–nasaler Abfolge dar. Die roten Kreise deuten auf Unterschiede im Reflektivitätsgrad und der Schichtdicke. (QuickTime mov 3,9MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bock, M., Paul, F. & Dörr, J. Diagnostik und Verlaufsbeurteilung der Multiplen Sklerose. Nervenarzt 84, 483–492 (2013). https://doi.org/10.1007/s00115-012-3707-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-012-3707-2

Schlüsselwörter

Keywords

Navigation