Skip to main content
Log in

Genetik von Bewegungsstörungen

Genetics of movement disorders

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

In den letzten Jahren wurden zahlreiche genetische Ursachen für Bewegungsstörungen wie Parkinson-Syndrom, Dystonie, Restless-legs-Syndrom und essenzieller Tremor identifiziert. Dabei trugen methodische Weiterentwicklungen wie genomweite Assoziationsstudien (GWAS) und Sequenzierungen der neuen Generation („next generation sequencing“, NGS) zu einem exponentiellen Anstieg bei der Detektion genetischer Varianten bei. Obwohl monogene Formen selten sind, stellen sie ein einzigartiges Modell dar, die Erkrankung nicht nur in ihrer manifesten Form zu studieren, sondern auch mutationstragende Risikopersonen in der präsymptomatischen Phase longitudinal zu beobachten. Die funktionelle Charakterisierung genetisch bedingter Veränderungen in Zell- und Tiermodellen kann weitere Hinweise zur Pathophysiologie geben. Sie bieten damit einen wichtigen Grundstein für die Ursachenforschung und Entwicklung neuer Therapieoptionen. In dieser Übersicht werden bekannte genetische Formen mit dem entsprechenden Phänotyp sowie genetische Risikovarianten für Bewegungsstörungen kurz vorgestellt und Erkenntnisse zur Funktion der beteiligten Proteine zusammengefasst.

Summary

A number of genetic causes of movement disorders including Parkinson disease, dystonia, restless legs syndrome or essential tremor have been elucidated in recent years. This process was accelerated by novel technologies including genome-wide association studies (GWAS) and next generation sequencing (NGS). Although monogenic forms are overall rare, they provide a unique opportunity to investigate mutation carriers who are still in the presymptomatic phase. As these subjects present individuals at risk to develop the disease, they have been included in longitudinal studies to unravel disease mechanisms and elucidate novel therapeutic targets. In addition, cell culture and animal studies have been performed to functionally characterize proteins mutated in different movement disorders to provide further insight into disturbed cellular pathways. In this article, we summarize known monogenic forms and the associated phenotype as well as genetic risk factors and review the function of relevant genes and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Spillantini MG, Schmidt ML, Lee VM et al (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  PubMed  CAS  Google Scholar 

  2. Lee VM, Trojanowski JQ (2006) Mechanisms of Parkinson’s disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron 52:33–38

    Article  PubMed  CAS  Google Scholar 

  3. Kumar KR, Lohmann K, Klein C (2012) Genetics of Parkinson disease and other movement disorders. Curr Opin Neurol 25:466–474

    Article  PubMed  CAS  Google Scholar 

  4. Chartier-Harlin MC, Kachergus J, Roumier C et al (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169

    Article  PubMed  CAS  Google Scholar 

  5. Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4:1318–1320

    Article  PubMed  CAS  Google Scholar 

  6. Zimprich A, Biskup S, Leitner P et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44:601–607

    Article  PubMed  CAS  Google Scholar 

  7. Healy DG, Falchi M, O’Sullivan SS et al (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7:583–590

    Article  PubMed  CAS  Google Scholar 

  8. Marin I (2006) The Parkinson disease gene LRRK2: evolutionary and structural insights. Mol Biol Evol 23:2423–2433

    Article  PubMed  CAS  Google Scholar 

  9. Toft M, Mata IF, Kachergus JM et al (2005) LRRK2 mutations and Parkinsonism. Lancet 365:1229–1230

    Article  PubMed  Google Scholar 

  10. Tofaris GK (2012) Lysosome-dependent pathways as a unifying theme in Parkinson‚s disease. Mov Disord 27:1364–1369

    Article  PubMed  CAS  Google Scholar 

  11. Lucking CB, Durr A, Bonifati V et al (2000) Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med 342:1560–1567

    Article  PubMed  CAS  Google Scholar 

  12. Klein C, Lohmann-Hedrich K, Rogaeva E et al (2007) Deciphering the role of heterozygous mutations in genes associated with parkinsonism. Lancet Neurol 6:652–662

    Article  PubMed  CAS  Google Scholar 

  13. Walden H, Martinez-Torres RJ (2012) Regulation of Parkin E3 ubiquitin ligase activity. Cell Mol Life Sci 69:3053–3067

    Article  PubMed  CAS  Google Scholar 

  14. Lo Bianco C, Schneider BL, Bauer M et al (2004) Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson’s disease. Proc Natl Acad Sci U S A 101:17510–17515

    Article  Google Scholar 

  15. Albanese A, Valente EM, Romito LM et al (2005) The PINK1 phenotype can be indistinguishable from idiopathic Parkinson disease. Neurology 64:1958–1960

    Article  PubMed  CAS  Google Scholar 

  16. Rakovic A, Grunewald A, Seibler P et al (2010) Effect of endogenous mutant and wild-type PINK1 on Parkin in fibroblasts from Parkinson disease patients. Hum Mol Genet 19:3124–3137

    Article  PubMed  CAS  Google Scholar 

  17. Simon-Sanchez J, Schulte C, Bras JM et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41:1308–1312

    Article  PubMed  CAS  Google Scholar 

  18. Sidransky E, Nalls MA, Aasly JO et al (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361:1651–1661

    Article  PubMed  CAS  Google Scholar 

  19. Brockmann K, Srulijes K, Hauser AK et al (2011) GBA-associated PD presents with nonmotor characteristics. Neurology 77:276–280

    Article  PubMed  CAS  Google Scholar 

  20. Brockmann K, Hilker R, Pilatus U et al (2012) GBA-associated PD. Neurodegeneration, altered membrane metabolism, and lack of energy failure. Neurology 79:213–220

    Article  PubMed  CAS  Google Scholar 

  21. Lill CM, Roehr JT, McQueen MB et al (2012) Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease: the PDGene. PLoS Genet 8:e1002548

    Article  PubMed  CAS  Google Scholar 

  22. Nalls M, Duran R, Lopez G et al (in press) A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. Arch Neurol

  23. Conrad C, Andreadis A, Trojanowski JQ et al (1997) Genetic evidence for the involvement of tau in progressive supranuclear palsy. Ann Neurol 41:277–281

    Article  PubMed  CAS  Google Scholar 

  24. Scholz SW, Houlden H, Schulte C et al (2009) SNCA variants are associated with increased risk for multiple system atrophy. Ann Neurol 65:610–614

    Article  PubMed  CAS  Google Scholar 

  25. Bressman SB, Sabatti C, Raymond D et al (2000) The DYT1 phenotype and guidelines for diagnostic testing. Neurology 54:1746–1752

    Article  PubMed  CAS  Google Scholar 

  26. Fuchs T, Ozelius LJ (2011) Genetics of dystonia. Semin Neurol 31:441–448

    Article  PubMed  Google Scholar 

  27. Nery FC, Zeng J, Niland BP et al (2008) TorsinA binds the KASH domain of nesprins and participates in linkage between nuclear envelope and cytoskeleton. J Cell Sci 121:3476–3486

    Article  PubMed  CAS  Google Scholar 

  28. Bressman SB, Raymond D, Fuchs T et al (2009) Mutations in THAP1 (DYT6) in early-onset dystonia: a genetic screening study. Lancet Neurol 8:441–446

    Article  PubMed  CAS  Google Scholar 

  29. Kaiser FJ, Osmanoric A, Rakovic A et al (2010) The dystonia gene DYT1 is repressed by the transcription factor THAP1 (DYT6). Ann Neurol 68:554–559

    Article  PubMed  CAS  Google Scholar 

  30. Ichinose H, Ohye T, Takahashi E et al (1994) Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat Genet 8:236–242

    Article  PubMed  CAS  Google Scholar 

  31. Rosewich H, Thiele H, Ohlenbusch A et al (2012) Heterozygous de-novo mutations in ATP1A3 in patients with alternating hemiplegia of childhood: a whole-exome sequencing gene-identification study. Lancet Neurol 11:764–773

    Article  PubMed  CAS  Google Scholar 

  32. Müller B, Hedrich K, Kock N et al (2002) Evidence that paternal expression of the epsilon-sarcoglycan gene accounts for reduced penetrance in myoclonus-dystonia. Am J Hum Genet 71:1303–1311

    Article  PubMed  Google Scholar 

  33. Lee HY, Huang Y, Bruneau N et al (2012) Mutations in the novel protein PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep 1:2–12

    Article  CAS  Google Scholar 

  34. Weber YG, Storch A, Wuttke TV et al (2008) GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest 118:2157–2168

    PubMed  CAS  Google Scholar 

  35. Bruggemann N, Spiegler J, Hellenbroich Y et al (2012) Beneficial prenatal levodopa therapy in autosomal recessive guanosine triphosphate cyclohydrolase 1 deficiency. Arch Neurol 69:1071–1075

    Article  PubMed  Google Scholar 

  36. Marras C, Lohmann K, Lang A, Klein C (2012) Fixing the broken system of genetic locus symbols: Parkinson disease and dystonia as examples. Neurology 78:1016–1024

    Article  PubMed  Google Scholar 

  37. Winkelmann J, Czamara D, Schormair B et al (2011) Genome-wide association study identifies novel restless legs syndrome susceptibility loci on 2p14 and 16q12.1. PLoS Genet 7:e1002171

    Article  PubMed  CAS  Google Scholar 

  38. Jimenez-Jimenez FJ, Garcia-Martin E, Lorenzo-Betancor O et al (2012) LINGO1 and risk for essential tremor: results of a meta-analysis of rs9652490 and rs11856808. J Neurol Sci 317:52–57

    Article  PubMed  CAS  Google Scholar 

  39. Thier S, Lorenz D, Nothnagel M et al (2012) Polymorphisms in the glial glutamate transporter SLC1A2 are associated with essential tremor. Neurology 79:243–248

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Die korrespondierende Autorin gibt für sich und ihre Koautorin an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lohmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohmann, K., Brockmann, K. Genetik von Bewegungsstörungen. Nervenarzt 84, 143–150 (2013). https://doi.org/10.1007/s00115-012-3638-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-012-3638-y

Schlüsselwörter

Keywords

Navigation