Skip to main content
Log in

Immunologische Aspekte bei schizophrenen Störungen

Immunology in schizophrenic disorders

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Der vorliegende Beitrag beschäftigt sich mit der Frage, inwieweit immunvermittelte Mechanismen eines entzündlichen Geschehens zur Pathogenese der Schizophrenie beitragen können. Es wird ein Modell vorgestellt, das psychoneuroimmunologische Befunde mit aktuellen Ergebnissen aus pharmakologischen, neurochemischen und genetischen Studien bei Schizophrenie zusammenführt. Eine zentrale Rolle in der Neurobiologie der Schizophrenie spielt die dopaminerge Neurotransmission, die durch Einflüsse des Glutamatsystems entscheidend moduliert wird. Die bei Schizophrenie beschriebene Hypofunktion des Glutamatsystems ist funktionell vor allem durch einen NMDA-Rezeptor-Antagonismus vermittelt. Kynureninsäure ist der einzige bisher nachgewiesene endogene NMDA-Rezeptor-Antagonist. Zusätzlich blockiert Kynureninsäure bereits in geringeren Konzentrationen den nikotinergen Acetylcholinrezeptor, der für kognitive Funktionen eine wichtige Bedeutung hat. Ein Anstieg des Kynureninsäurespiegels kann neurobiologisch also sowohl psychotische Symptome als auch kognitive Einschränkungen erklären. Eine Reihe von Befunden legen nahe, dass eine (pränatale) Infektion, verbunden mit einem frühen Sensibilisierungsprozess des Immunsystems, in einem Ungleichgewicht der Immunantwort (Typ-1- vs. Typ-2-Immunantwort) resultiert. Diese Immunkonstellation führt zur Hemmung des Enzyms Indoleamin-Dioxygenase, das den Abbau von Tryptophan zu Kynurenin reguliert. Diese Immunkonstellation spiegelt sich im ZNS vor allem im Aktivierungsstatus von Mikroglia und Astrozyten wider. Die bei Schizophrenen bestehende Astrozytenaktivierung führt vermutlich zu einer weiteren Akkumulation von Kynureninsäure, die dann nicht weiter abgebaut werden kann. Deshalb kann Kynureninsäure im ZNS Schizophrener akkumulieren und als NMDA-Antagonist kognitive Einbußen und schließlich psychotische Symptome hervorrufen. Dieses Modell kann erklären, auf welchem Weg die immunmediierte glutamaterg-dopaminerge Dysregulation zu den klinischen Symptomen der Schizophrenie führen kann. Therapeutische Konsequenzen (z. B. Cyclooxygenase-II-Inhibitoren) werden diskutiert.

Summary

This manuscript deals with whether immune-mediated mechanisms of inflammation contribute to the pathogenesis of schizophrenia. A model is presented which integrates psychoneuroimmunologic findings and actual results from pharmacological, neurochemical, and genetic studies in schizophrenia. A pivotal role in the neurobiology of schizophrenia is played by dopaminergic neurotransmission, which is modulated by influences of the glutamatergic system. The decreased function of the glutamate system described in schizophrenia seems primarily mediated by N-methyl-D-aspartate (NMDA) receptor antagonism. Kynurenine acid is the only known endogenous NMDA receptor antagonist. In higher concentrations it blocks the NMDA receptor, but in lower concentrations it blocks the nicotinergic acetylcholin receptor, which has a prominent role in cognitive functions. Therefore, higher levels of kynurenine acid may explain psychotic symptoms and cognitive dysfunction. Several findings point out that prenatal infection, associated with an early sensitisation of the immune system, may result in an imbalance of the immune response (type 1 vs type 2) in schizophrenia. This immune constellation leads to inhibition of the enzyme indoleamin dioxigenase (IDO). It and tryptophane 2,3-dioxygenase (TDO) both catalyse the degradation from tryptophan to kynurenine. Due to the inhibition of IDO, tryptophan is metabolised to kynurenine primarily by TDO. In the CNS, TDO is located only in astrocytes, which are in particular activated in schizophrenia and in which kynurenine acid is the final product and can not be further metabolised. Therefore kynurenine acid accumulates in the CNS of schizophrenics and – due to its NMDA-antagonistic properties – leads to cognitive dysfunction and psychotic symptoms. This model describes the pathway of immune-mediated glutamatergic-dopaminergic dysregulation, which may lead to the clinical symptoms of schizophrenia. Therapeutic consequences (e.g. cyclo-oxygenase-2 inhibitors) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Aloisi F, Ria F, Adorini L (2000) Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol Today 21:141–147

    Article  PubMed  Google Scholar 

  2. Aloisi F, Serafini B, Adorini L (2000) Glia-T cell dialogue. J Neuroimmunol 107:111–117

    Article  PubMed  Google Scholar 

  3. Bayer TA, Buslei R, Havas L et al. (1999) Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 20:126–128

    Article  Google Scholar 

  4. Bechter K, Schreiner V, Herzog S et al. (2003) [CSF filtration as experimental therapy in therapyresistant psychoses in Borna disease virus-seropositive patients]. Psychiatr Prax 30:216–220

    Google Scholar 

  5. Brown AS, Begg MD, Gravenstein S et al. (2004) Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 61:774–780

    Article  PubMed  Google Scholar 

  6. Brown AS, Hooton J, Schaefer CA et al. (2004) Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry 161:889–895

    Article  PubMed  Google Scholar 

  7. Carlsson A (1998) Schizophrenie und Neurotransmitterstörungen. Neue Perspektiven und therapeutische Ansätze. In: Möller H-J, Müller N (Hrsg) Schizophrenie – Moderne Konzepte zu Diagnostik, Pathogenese und Therapie. Springer, Berlin Heidelberg New York, S 93–116

  8. Casolini P, Catalani A, Zuena AR et al. (2002) Inhibition of COX-2 reduces the age-dependent increase of hippocampal inflammatory markers, corticosterone secretion, and behavioral impairments in the rat. J Neurosci Res 68:337–343

    Article  PubMed  Google Scholar 

  9. Cazzullo CL, Scarone S, Grassi B et al. (1998) Cytokines production in chronic schizophrenia patients with or without paranoid behaviour. Prog Neuropsychopharmacol Biol Psychiatry 22:947–957

    Article  PubMed  Google Scholar 

  10. Chiang SSW, Riedel M, Müller N et al. (2004) Th2-shift in schizophrenia: primary findings from whole blood in vitro stimulation. Psychiatry Online

  11. Das I, Khan NS (1998) Increased arachidonic acid induced platelet chemiluminescence indicates cyclooxygenase overactivity in schizophrenic subjects. Prostaglandins Leukot Essent Fatty Acids 58:165–168

    Article  PubMed  Google Scholar 

  12. Dean B (2003) The cortical serotonin2A receptor and the pathology of schizophrenia: a likely accomplice. J Neurochem 85:1–13

    Google Scholar 

  13. Dean K, Murray RM (2005) Environmental risk factors for psychosis. Dialogues Clin Neurosci 7:69–80

    Google Scholar 

  14. Erhardt S, Oberg H, Mathe JM et al. (2001) Pharmacological elevation of endogenous kynurenic acid levels activates nigral dopamine neurons. Amino Acids 20:353–362

    Article  PubMed  Google Scholar 

  15. Erhardt S, Schwieler L, Engberg G (2003) Kynurenic acid and schizophrenia. Adv Exp Med Biol 527:155–165

    PubMed  Google Scholar 

  16. Farber NB, Wozniak DF, Price MT et al. (1995) Age-specific neurotoxicity in the rat associated with NMDA receptor blockade: potential relevance to schizophrenia? Biol Psychiatry 38:788–796

    Article  PubMed  Google Scholar 

  17. Fortier ME, Joober R, Luheshi GN et al. (2004) Maternal exposure to bacterial endotoxin during pregnancy enhances amphetamine-induced locomotion and startle responses in adult rat offspring. J Psychiatr Res 38:335–345

    Article  PubMed  Google Scholar 

  18. Furukawa H, del RA, Monge-Arditi G et al. (1998) Interleukin-1, but not stress, stimulates glucocorticoid output during early postnatal life in mice. Ann N Y Acad Sci 840:117–122

    Article  PubMed  Google Scholar 

  19. Gattaz WF, Abrahao AL, Foccacia R (2004) Childhood meningitis, brain maturation and the risk of psychosis. Eur Arch Psychiatry Clin Neurosci 254:23–26

    Google Scholar 

  20. Grohmann U, Fallarino F, Puccetti P (2003) Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 24:242–248

    Article  PubMed  Google Scholar 

  21. Grosskopf A, Müller N, Malo A et al. (1998) Potential role for the narcolepsy- and multiple sclerosis-associated HLA allele DQB1*0602 in schizophrenia subtypes. Schizophr Res 30:187–189

    Article  PubMed  Google Scholar 

  22. Guillemin GJ, Kerr SJ, Smythe GA et al. (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78:842–853

    Article  PubMed  Google Scholar 

  23. Harris SG, Padilla J, Koumas L et al. (2002) Prostaglandins as modulators of immunity. Trends Immunol 23:144–150

    Article  PubMed  Google Scholar 

  24. Heyes MP, Chen CY, Major EO et al. (1997) Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Biochem J 326:351–356

    PubMed  Google Scholar 

  25. Hilmas C, Pereira EF, Alkondon M et al. (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473

    PubMed  Google Scholar 

  26. Kaiya H, Uematsu M, Ofuji M et al. (1989) Elevated plasma prostaglandin E2 levels in schizophrenia. J Neural Transm 77:39–46

    Article  PubMed  Google Scholar 

  27. van Kammen DP, McAllister-Sistilli CG, Kelley ME (1997) Relationship between immune and behavioral measures in schizophrenia. In: Wieselmann G (ed) Current update in psychoimmunology. Springer, Berlin Heidelberg New York, pp 51–55

  28. Kessler M, Terramani T, Lynch G et al. (1989) A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52:1319–1328

    PubMed  Google Scholar 

  29. Kim JS, Kornhuber HH, Schmid-Burgk W et al. (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 20:379–382

    Article  PubMed  Google Scholar 

  30. Kiss C, Ceresoli-Borroni G, Guidetti P et al. (2003) Kynurenate production by cultured human astrocytes. J Neural Transm 110:1–14

    PubMed  Google Scholar 

  31. Körschenhausen DA, Hampel HJ, Ackenheil M et al. (1996) Fibrin degradation products in post mortem brain tissue of schizophrenics: a possible marker for underlying inflammatory processes. Schizophr Res 19:103–109

    Article  PubMed  Google Scholar 

  32. Kraepelin E (1919) Dementia Praecox. Churchill Livingston, New York

  33. Krystal JH, Karper LP, Seibyl JP et al. (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    PubMed  Google Scholar 

  34. Laruelle M, Abi-Dargham A, van Dyck CH et al. (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 20:9235–9240

    Article  Google Scholar 

  35. Lee H, Baek S, Joe SJ et al. (2006) Modulation of IFN-gamma production by TNF-alpha in macrophages from the tumor environment: significance as an angiogenic switch. Int Immunopharmacol 6:71–78

    Article  PubMed  Google Scholar 

  36. Leweke FM, Gerth CW, Koethe D et al. (2004) Antibodies to infectious agents in individuals with recent onset schizophrenia. Eur Arch Psychiatry Clin Neurosci 254:4–8

    Google Scholar 

  37. Maier W, Hofgen B, Zobel A et al. (2005) Genetic models of schizophrenia and bipolar disorder: overlapping inheritance or discrete genotypes? Eur Arch Psychiatry Clin Neurosci 255:159–166

    Google Scholar 

  38. Meira-Lima IV, Pereira AC, Mota GF et al. (2003) Analysis of a polymorphism in the promoter region of the tumor necrosis factor alpha gene in schizophrenia and bipolar disorder: further support for an association with schizophrenia. Mol Psychiatry 8:718–720

    Article  PubMed  Google Scholar 

  39. Miller CL, Llenos IC, Dulay JR et al. (2004) Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol Dis 15:618–629

    Article  PubMed  Google Scholar 

  40. Mittleman BB, Castellanos FX, Jacobsen LK et al. (1997) Cerebrospinal fluid cytokines in pediatric neuropsychiatric disease. J Immunol 159:2994–2999

    PubMed  Google Scholar 

  41. Molholm HB (1942) Hyposensitivity to foreign protein in schizophrenic patients. Psychiatr Q 16:565–571

    Google Scholar 

  42. Müller N (1997) Die Rolle des Zytokinnetzwerks im ZNS und psychische Störungen. Nervenarzt 68:11–20

    Article  PubMed  Google Scholar 

  43. Müller N (2004) Immunological and infectious aspects of schizophrenia. Eur Arch Psychiatry Clin Neurosci 254:1–3

    Google Scholar 

  44. Müller N, Schwarz MJ (2003) Role of the cytokine network in major psychoses. In: Hertz L (ed) Non-neuronal cells of the nervous system: function and dysfunction. Elsevier, Amsterdam, pp 999–1031

  45. Müller N, Ackenheil M, Hofschuster E et al. (1991) Cellular immunity in schizophrenic patients before and during neuroleptic treatment. Psychiatry Res 37:147–160

    Article  PubMed  Google Scholar 

  46. Müller N, Riedel M, Schwarz MJ et al. (1997) Immunomodulatory effects of neuroleptics to the cytokine system and the cellular immune system in schizophrenia. In: Wieselmann G (ed) Current update in psychoimmunology. Springer, Berlin Heidelberg New York, pp 57–67

  47. Müller N, Empl M, Riedel M et al. (1997) Neuroleptic treatment increases soluble IL-2 receptors and decreases soluble IL-6 receptors in schizophrenia. Eur Arch Psychiatry Clin Neurosci 247:308–313

    PubMed  Google Scholar 

  48. Müller N, Riedel M, Hadjamu M et al. (1999) Increase in expression of adhesion molecule receptors on T helper cells during antipsychotic treatment and relationship to blood-brain barrier permeability in schizophrenia. Am J Psychiatry 156:634–636

    PubMed  Google Scholar 

  49. Müller N, Riedel M, Ackenheil M et al. (2000) Cellular and humoral immune system in schizophrenia: a conceptual re-evaluation. World J Biol Psychiatry 1:173–179

    PubMed  Google Scholar 

  50. Müller N, Riedel M, Scheppach C et al. (2002) Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. Am J Psychiatry 159:1029–1034

    Article  PubMed  Google Scholar 

  51. Müller N, Ulmschneider M, Scheppach C et al. (2004) COX-2 inhibition as a treatment approach in schizophrenia: immunological considerations and clinical effects of celecoxib add-on therapy. Eur Arch Psychiatry Clin Neurosci 254:14–22

    Google Scholar 

  52. Müller N, Riedel M, Schwarz MJ (2004) Psychotropic effects of COX-2 inhibitors – a possible new approach for the treatment of psychiatric disorders. Pharmacopsychiatry 37:266–269

    Article  PubMed  Google Scholar 

  53. Müller N, Riedel M, Schwarz MJ et al. (2005) Clinical effects of COX-2 inhibitors on cognition in schizophrenia. Eur Arch Psychiatry Clin Neurosci 255:149–151

    Google Scholar 

  54. Nuechterlein KH, Dawson ME, Green MF (1994) Information-processing abnormalities as neuropsychological vulnerability indicators for schizophrenia. Acta Psychiatr Scand Suppl 384:71–79

    PubMed  Google Scholar 

  55. Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007

    PubMed  Google Scholar 

  56. Ozawa K, Hashimoto K, Kishimoto T et al. (2006) Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry 59:546–554

    Article  PubMed  Google Scholar 

  57. Pilowsky LS, Bressan RA, Stone JM et al. (2006) First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol Psychiatry 11:118–119

    Article  PubMed  Google Scholar 

  58. Pyeon D, Diaz FJ, Splitter GA (2000) Prostaglandin E(2) increases bovine leukemia virus tax and pol mRNA levels via cyclooxygenase 2: regulation by interleukin-2, interleukin-10, and bovine leukemia virus. J Virol 74:5740–5745

    Article  PubMed  Google Scholar 

  59. Ramchand R, Wei J, Ramchand CN et al. (1994) Increased serum IgE in schizophrenic patients who responded poorly to neuroleptic treatment. Life Sci 54:1579–1584

    Article  PubMed  Google Scholar 

  60. Rantakallio P, Jones P, Moring J et al. (1997) Association between central nervous system infections during childhood and adult onset schizophrenia and other psychoses: a 28-year follow-up. Int J Epidemiol 26:837–843

    Article  PubMed  Google Scholar 

  61. Riedel M, Krönig H, Schwarz MJ et al. (2002) No association between the G308A polymorphism of the tumor necrosis factor-alpha gene and schizophrenia. Eur Arch Psychiatry Clin Neurosci 252:232–234

    Google Scholar 

  62. Riedel M, Spellmann I, Schwarz MJ et al. (2006) Decreased T cellular immune response in schizophrenic patients. J Psychiatr Res (in press). DOI 10.1016/j.jpsychires.2005.11.007

  63. Rothermundt M, Falkai P, Ponath G et al. (2004) Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol Psychiatry 9:897–899

    Article  PubMed  Google Scholar 

  64. Rothermundt M, Ponath G, Arolt V (2004) S100B in schizophrenic psychosis. Int Rev Neurobiol 59:445–470

    PubMed  Google Scholar 

  65. Rowe J, Yerkovich ST, Richmond P et al. (2005) Th2-associated local reactions to the acellular diphtheria-tetanus-pertussis vaccine in 4- to 6-year-old children. Infect Immun 73:8130–8135

    Article  PubMed  Google Scholar 

  66. Schuld A, Hinze-Selch D, Pollmacher T (2004) Zytokinnetzwerke bei Patienten mit Schizophrenie und ihre Bedeutung für die Pathophysiologie der Erkrankung. Nervenarzt 75:215–226

    Article  PubMed  Google Scholar 

  67. Schwab SG, Mondabon S, Knapp M et al. (2003) Association of tumor necrosis factor alpha gene -G308A polymorphism with schizophrenia. Schizophr Res 65:19–25

    Article  PubMed  Google Scholar 

  68. Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10

    Article  PubMed  Google Scholar 

  69. Schwarcz R, Rassoulpour A, Wu HQ et al. (2001) Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 50:521–530

    Article  PubMed  Google Scholar 

  70. Schwarz MJ, Riedel M, Ackenheil M et al. (2000) Decreased levels of soluble intercellular adhesion molecule-1 (sICAM-1) in unmedicated and medicated schizophrenic patients. Biol Psychiatry 47:29–33

    Article  PubMed  Google Scholar 

  71. Schwarz MJ, Chiang S, Müller N et al. (2001) T-helper-1 and T-helper-2 responses in psychiatric disorders. Brain Behav Immun 15:340–370

    Article  PubMed  Google Scholar 

  72. Schwarz MJ, Krönig H, Riedel M et al. (2005) IL-2 and IL-4 polymorphisms as candidate genes in schizophrenia. Eur Arch Psychiatry Clin Neurosci 256:72–76

    Article  PubMed  Google Scholar 

  73. Schwieler L, Erhardt S, Erhardt C et al. (2005) Prostaglandin-mediated control of rat brain kynurenic acid synthesis--opposite actions by COX-1 and COX-2 isoforms. J Neural Transm 112:863–872

    Article  PubMed  Google Scholar 

  74. Speciale C, Wu HQ, Cini M et al. (1996) (R,S)-3,4-dichlorobenzoylalanine (FCE 28833A) causes a large and persistent increase in brain kynurenic acid levels in rats. Eur J Pharmacol 315:263–267

    Article  PubMed  Google Scholar 

  75. Sperner-Unterweger B, Miller C, Holzner B et al. (1999) Measurement of neopterin, kynurenine and tryptophan in sera of schizophrenic patients. In: Müller N (ed) Psychiatry, psychoimmunology, and viruses. Springer, Berlin Heidelberg New York, pp 115–119

  76. Stolina M, Sharma S, Lin Y et al. (2000) Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol 164:361–370

    PubMed  Google Scholar 

  77. Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309–379

    PubMed  Google Scholar 

  78. Sumiyoshi T, Jin D, Jayathilake K et al. (2005) Prediction of the ability of clozapine to treat negative symptoms from plasma glycine and serine levels in schizophrenia. Int J Neuropsychopharmacol 8:451–455

    Article  PubMed  Google Scholar 

  79. Takikawa O, Yoshida R, Kido R et al. (1986) Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase. J Biol Chem 261:3648–3653

    PubMed  Google Scholar 

  80. Tamminga CA, Cascella N, Fakouhl TD et al. (1992) Enhancement of NMDA-mediated transmission in schizophrenia: effects of milacemide. In: Meltzer HY (ed) Novel antipsychotic drugs. Raven Press, New York, pp 171–177

  81. Tanaka KF, Shintani F, Fujii Y et al. (2000) Serum interleukin-18 levels are elevated in schizophrenia. Psychiatry Res 96:75–80

    Article  PubMed  Google Scholar 

  82. Tohmi M, Tsuda N, Watanabe Y et al. (2004) Perinatal inflammatory cytokine challenge results in distinct neurobehavioral alterations in rats: implication in psychiatric disorders of developmental origin. Neurosci Res 50:67–75

    Article  PubMed  Google Scholar 

  83. Wierzba-Bobrowicz T, Lewandowska E, Kosno-Kruszewska E et al. (2004) Degeneration of microglial cells in frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol 42:157–165

    PubMed  Google Scholar 

  84. Wilke I, Arolt V, Rothermundt M et al. (1996) Investigations of cytokine production in whole blood cultures of paranoid and residual schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 246:279–284

    Article  PubMed  Google Scholar 

  85. Yolken RH, Torrey EF (1995) Viruses, schizophrenia, and bipolar disorder. Clin Microbiol Rev 8:131–145

    PubMed  Google Scholar 

  86. Zobel A, Maier W (2004) Endophänotypen – ein neues Konzept zur biologischen Charakterisierung psychischer Störungen [Endophenotype – a new concept for biological characterization of psychiatric disorders]. Nervenarzt 75:205–214

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

N.M. hat die therapeutische Anwendung der COX-2-Inhibition bei psychiatrischen Indikationen zum Patentschutz eingereicht. Er erhielt Honorare der Firmen Pfizer, Pharmacia und Janssen-Cilag. Die Firmen Pfizer und Pharmacia unterstützen Forschungsprojekte von N.M. Trotz des möglichen Interessenkonfliktes ist der Beitrag unabhängig und produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Müller.

Additional information

Dieser Artikel ist Manfred Ackenheil gewidmet, einem Pionier der Psychoneuroimmunologie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, N., Schwarz, M.J. Immunologische Aspekte bei schizophrenen Störungen. Nervenarzt 78, 253–263 (2007). https://doi.org/10.1007/s00115-006-2108-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-006-2108-9

Schlüsselwörter

Keywords

Navigation