Skip to main content

Advertisement

Log in

Pharmakologische Zusatzbehandlung in der Aphasietherapie

Status quo und Perspektiven

Present status and future possibilities of adjuvant pharmacotherapy for aphasia

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Eine Aphasie zählt zu den häufigsten und subjektiv schwerwiegendsten Folgen eines Schlaganfalls. Angesichts einer geringen Spontanerholung und der beschränkten Wirksamkeit konventioneller Sprachtherapie stellt sich die Frage nach Möglichkeiten der Therapieverbesserung. Neben einer Steigerung der Trainingsfrequenz — mit täglichen, mehrstündigen Einheiten und einer hohen Wiederholungsrate des Sprachmaterials („massiertes Training“) — bietet sich die Möglichkeit einer adjuvanten Pharmakotherapie. Hier beleuchten wir das Potenzial monoaminerger (Bromocriptin, Levodopa, d-Amphetamin) und cholinerger (Donepezil) Medikamente bei Aphasie. Eine abschließende Wirksamkeitsbewertung einer Kombinationsbehandlung aus massiertem Sprachtraining und pharmakologischer Zusatzbehandlung kann jedoch erst durch Etablierung von Verbundstrukturen und Durchführung hinreichend großer randomisierter, plazebokontrollierter klinischer Studien erfolgen. Neben diesen medikamentösen Strategien erwecken tierexperimentelle Ergebnisse zur Funktionserholung nach Gehirnschädigungen die Hoffnung, dass mittelfristig auch neurotrophe Faktoren oder Stammzellen in der adjuvanten Therapie von Aphasie einen Platz finden werden.

Summary

Aphasia is one of the most frequent and disabling consequences of stroke. Poor spontaneous recovery and the limited success of conventional speech therapy bring up the question of how current treatment approaches can be improved. Besides increasing training frequency—with daily sessions lasting several hours and high repetition rates of language materials (“massed training”)—adjuvant drug therapy may help to increase therapy efficacy. In this article, we illuminate the potential of monoaminergic (bromocriptine, levodopa, d-amphetamine) and cholinergic (donepezil) substances for treating aphasia. For a final evaluation of combined massed training and adjuvant pharmacotherapy, randomized, placebo-controlled (multicenter) clinical trials with sufficient numbers of patients are needed. Furthermore, results of experimental animal studies of functional recovery in brain damage raise hopes that neurotrophic factors or stem cells might find a place in recovery from aphasia in the intermediate future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. VAT = visuelle Aktionstherapie, MODAK = Modalitätenaktivierung in der Aphasietherapie, REST = Reduzierte Syntaxtherapie, PAKT = Partner Aphasiker Kommunikationstraining, MIT = melodische Intonationstherapie, PACE = Förderung der kommunikativen Fähigkeiten von Aphasikern (s. auch [16, 17]).

Literatur

  1. Wiesner G, Grimm J, Bittner E (1999) [Stroke: prevalence, incidence, trends, East-West comparison. Initial results of the 1998 Federal Health Survey]. Gesundheitswesen 61:S79–S84

    PubMed  Google Scholar 

  2. Kolominsky-Rabas PL, Heuschmann PU (2002) [Incidence, etiology and long-term prognosis of stroke]. Fortschr Neurol Psychiatr 70:657–662

    Article  PubMed  Google Scholar 

  3. Heinemann LA, Barth W, Garbe E et al. (1998) [Epidemiologic data of stroke. Data of the WHO-MONICA Project in Germany]. Nervenarzt 69:1091–1099

    Article  PubMed  Google Scholar 

  4. Pedersen PM, Jorgensen HS, Nakayama H et al. (1995) Aphasia in acute stroke: incidence, determinants, and recovery. Ann Neurol 38:659–666

    Article  PubMed  Google Scholar 

  5. Kumral E, Bayulkem G, Evyapan D et al. (2002) Spectrum of anterior cerebral artery territory infarction: clinical and MRI findings. Eur J Neurol 9:615–624

    Article  PubMed  Google Scholar 

  6. Willmes K, Poeck K (1984) Ergebnisse einer multizentrischen Untersuchung über die Spontanprognose von Aphasien vaskulärer Ätiologie. Nervenarzt 55:62–71

    PubMed  Google Scholar 

  7. Biniek R, Huber W, Glindemann R et al. (1992) Der Aachener Aphasie Bedside Test—Testpsychologische Gütekriterien. Nervenarzt 63:473–479

    PubMed  Google Scholar 

  8. Laska AC, Hellblom A, Murray V et al. (2001) Aphasia in acute stroke and relation to outcome. J Intern Med 249:413–422

    Article  PubMed  Google Scholar 

  9. Demeurisse G, Demol O, Derouck M et al. (1980) Quantitative study of the rate of recovery from aphasia due to ischemic stroke. Stroke 11:455–458

    PubMed  Google Scholar 

  10. Kertesz A, McCabe P (1977) Recovery patterns and prognosis in aphasia. Brain 100:1–18

    PubMed  Google Scholar 

  11. Kotila M, Waltimo O, Niemi ML et al. (1984) The profile of recovery from stroke and factors influencing outcome. Stroke 15:1039–1044

    PubMed  Google Scholar 

  12. Wade DT, Hewer RL, David RM et al. (1986) Aphasia after stroke: natural history and associated deficits. J Neurol Neurosurg Psychiatry 49:11–16

    PubMed  Google Scholar 

  13. Black-Schaffer RM, Osberg JS (1990) Return to work after stroke: development of a predictive model. Arch Phys Med Rehabil 71:285–290

    PubMed  Google Scholar 

  14. Kauhanen M, Korpelainen JT, Hiltunen P et al. (1999) Poststroke depression correlates with cognitive impairment and neurological deficits. Stroke 30:1875–1880

    PubMed  Google Scholar 

  15. Kauhanen ML, Korpelainen JT, Hiltunen P et al. (2000) Aphasia, depression, and non-verbal cognitive impairment in ischaemic stroke. Cerebrovasc Dis 10:455–461

    Article  PubMed  Google Scholar 

  16. Tesak J (1999) Grundlagen der Aphasietherapie. Schulz-Kirchner, Idstein

  17. Lang C, von Stockert TR (1986) [Current status of aphasia therapy]. Fortschr Neurol Psychiatr 54:119–137

    PubMed  Google Scholar 

  18. Greener J, Enderby P, Whurr R (2000) Speech and language therapy for aphasia following stroke. Cochrane Database Syst Rev(2):CD000425

    Google Scholar 

  19. Holland AL, Fromm DS, DeRuyter F et al. (1996) Treatment efficacy: aphasia. J Speech Hear Res 39:S27–S36

    PubMed  Google Scholar 

  20. Robey RR (1998) A meta-analysis of clinical outcomes in the treatment of aphasia. J Speech Lang Hear Res 41:172–187

    PubMed  Google Scholar 

  21. Bhogal SK, Teasell R, Speechley M (2003) Intensity of aphasia therapy, impact on recovery. Stroke 34:987–993

    Article  Google Scholar 

  22. Basso A, Caporali A (2001) Aphasia therapy or the importance of being earnest. Aphasiology 15:307–332

    Article  Google Scholar 

  23. Pulvermuller F, Neininger B, Elbert T et al. (2001) Constraint-induced therapy of chronic aphasia after stroke. Stroke 32:1621–1626

    PubMed  Google Scholar 

  24. Poeck K, Huber W, Willmes K (1989) Outcome of intensive language treatment in aphasia. J Speech Hear Disord 54:471–479

    PubMed  Google Scholar 

  25. Marshall RC, Wertz RT, Weiss DG et al. (1989) Home treatment for aphasic patients by trained nonprofessionals. J Speech Hear Disord 54:462–470

    PubMed  Google Scholar 

  26. Wertz RT, Weiss DG, Aten JL et al. (1986) Comparison of clinic, home, and deferred language treatment for aphasia. A veterans administration cooperative study. Arch Neurol 43:653–658

    PubMed  Google Scholar 

  27. Meinzer M, Elbert T, Wienbruch C et al. (2004) Intensive language training enhances brain plasticity in chronic aphasia. BMC Biol 2:20

    Article  PubMed  Google Scholar 

  28. Zahn R, Drews E, Specht K et al. (2004) Recovery of semantic word processing in global aphasia: a functional MRI study. Brain Res Cogn Brain Res 18:322–336

    Article  PubMed  Google Scholar 

  29. Zahn R, Huber W, Drews E et al. (2002) Recovery of semantic word processing in transcortical sensory aphasia: a functional magnetic resonance imaging study. Neurocase 8:376–386

    PubMed  Google Scholar 

  30. Thiel A, Habedank B, Winhuisen L et al. (2005) Essential language function of the right hemisphere in brain tumor patients. Ann Neurol 57:128–131

    Article  PubMed  Google Scholar 

  31. Weiller C, Isensee C, Rijntjes M et al. (1995) Recovery from Wernicke’s aphasia: a positron emission tomographic study. Ann Neurol 37:723–732

    Article  PubMed  Google Scholar 

  32. Fernandez B, Cardebat D, Demonet JF et al. (2004) Functional MRI follow-up study of language processes in healthy subjects and during recovery in a case of aphasia. Stroke 35:2171–2176

    Article  PubMed  Google Scholar 

  33. Liepert J, Hamzei F, Weiller C (2004) Lesion-induced and training-induced brain reorganization. Restor Neurol Neurosci 22:269–277

    PubMed  Google Scholar 

  34. Liepert J, Uhde I, Graf S et al. (2001) Motor cortex plasticity during forced-use therapy in stroke patients: a preliminary study. J Neurol 248:315–321

    Article  PubMed  Google Scholar 

  35. Turner AM, Greenough WT (1985) Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron. Brain Res 329:195–203

    Article  PubMed  Google Scholar 

  36. Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  37. Taub E, Uswatte G, Elbert T (2002) New treatments in neurorehabilitation founded on basic research. Nat Rev Neurosci 3:228–236

    Article  PubMed  Google Scholar 

  38. Jenkins WM, Merzenich MM, Ochs MT et al. (1990) Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J Neurophysiol 63:82–104

    PubMed  Google Scholar 

  39. Feeney DM, Gonzalez A, Law WA (1982) Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science 217:855–857

    PubMed  Google Scholar 

  40. Feeney DM, Hovda DA (1983) Amphetamine and apomorphine restore tactile placing after motor cortex injury in the cat. Psychopharmacology (Berl) 79:67–71

    Google Scholar 

  41. Hovda DA, Feeney DM (1984) Amphetamine with experience promotes recovery of locomotor function after unilateral frontal cortex injury in the cat. Brain Res 298:358–361

    Article  PubMed  Google Scholar 

  42. Smith RD, Kistler MK, Cohen-Williams M et al. (1996) Cholinergic improvement of a naturally-occurring memory deficit in the young rat. Brain Res 707:13–21

    Article  PubMed  Google Scholar 

  43. Bliss TVP, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the erforant path. J Physiol Lond 232:331–356

    PubMed  Google Scholar 

  44. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  PubMed  Google Scholar 

  45. Kelley AE (2004) Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 44:161–179

    Article  PubMed  Google Scholar 

  46. Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol 69:375–390

    Article  PubMed  Google Scholar 

  47. Hurwitz BE, Dietrich WD, Mc Cabe PM et al. (1991) Amphetamine promotes recovery from sensory-motro integration deficit after thrombotic infarction of the primary somatosensory rat cortex. Stroke 22:648–654

    PubMed  Google Scholar 

  48. Uranova NA, Klintzova AJ, Istomin VV et al. (1989) The effects of amphetamine on synaptic plasticity in rat’s medial prefrontal cortex. J Hirnforsch 30:45–50

    PubMed  Google Scholar 

  49. Crisostomo EA, Duncan PW, Propst M et al. (1988) Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients. Ann Neurol 23:94–97

    Article  PubMed  Google Scholar 

  50. Walker-Batson D, Smith P, Curtis S et al. (1995) Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence. Stroke 26:2254–2259

    PubMed  Google Scholar 

  51. Martinsson L, Hardemark HG, Wahlgren NG (2003) Amphetamines for improving stroke recovery: a systematic cochrane review. Stroke 34:2766

    Article  PubMed  Google Scholar 

  52. Martinsson L, Eksborg S (2004) Drugs for stroke recovery: the example of amphetamines. Drugs Aging 21:67–79

    PubMed  Google Scholar 

  53. Walker-Batson D, Curtis S, Natarajan R et al. (2001) A double-blind, placebo-controlled study of the use of amphetamine in the treatment of aphasia. Stroke 32:2093–2098

    PubMed  Google Scholar 

  54. Carlsson A, Lindqvist M, Magnusson T et al. (1958) On the presence of 3-hydroxytyramine in brain. Science 127:471

    PubMed  Google Scholar 

  55. Carlsson A (1964) Evidence for a role of dopamine in extrapyramidal functions. Acta Neuroveg (Wien) 26:484–493

    Google Scholar 

  56. Kabai P, Stewart MG, Tarcali J et al. (2004) Inhibiting effect of D1, but not D2 antagonist administered to the striatum on retention of passive avoidance in the chick. Neurobiol Learn Mem 81:155–158

    Article  PubMed  Google Scholar 

  57. Goldman-Rakic PS, Castner SA, Svensson TH et al. (2004) Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl) 174:3–16

    Google Scholar 

  58. Gurden H, Takita M, Jay TM (2000) Essential role of D1 but not D2 receptors in the NMDA receptor- dependent long-term potentiation at hippocampal-prefrontal cortex synapses in vivo. J Neurosci 20:RC106

    PubMed  Google Scholar 

  59. Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    Article  PubMed  Google Scholar 

  60. Boyeson MG, Feeney DM (1990) Intraventricular norepinephrine facilitates motor recovery following sensorimotor cortex injury. Pharmacol Biochem Behav 35:497–501

    Article  PubMed  Google Scholar 

  61. Feeney DM, Hovda DA (1985) Reinstatement of binocular depth perception by amphetamine and visual experience after visual cortex ablation. Brain Res 342:352–356

    Article  PubMed  Google Scholar 

  62. Taub E (2000) Constraint-induced movement therapy and massed practice. Stroke 31:986–988

    PubMed  Google Scholar 

  63. Scheidtmann K, Fries W, Muller F et al. (2001) Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study. Lancet 358:787–790

    Article  PubMed  Google Scholar 

  64. Pahlke K, Scheidtmann K (2003) Levodopa steigert die Effektivität des Explorationstrainings bei linksseitigem Neglect. Akt Neurologie 30(S1):131

    Article  Google Scholar 

  65. Nutt JG, Fellman JH (1984) Pharmacokinetics of levodopa. Clin Neuropharmacol 7:35–49

    PubMed  Google Scholar 

  66. Lal S, Merbtiz CP, Grip JC (1988) Modification of function in head-injured patients with Sinemet. Brain Inj 2:225–233

    PubMed  Google Scholar 

  67. Hacki T, Kenklies M, Hofmann R et al. (1990) [Pharmacotherapy of voice and articulation disorders in aphasia]. Folia Phoniatr (Basel) 42:283–288

    Google Scholar 

  68. Knecht S, Breitenstein C, Bushuven S et al. (2004) Levodopa: faster and better word learning in normal humans. Ann Neurol 56:20–26

    Article  PubMed  Google Scholar 

  69. Breitenstein C, Wailke S, Bushuven S et al. (2004) D-amphetamine boosts language learning independent of its cardiovascular and motor arousing effects. Neuropsychopharmacology 29:1704–1714

    Article  PubMed  Google Scholar 

  70. Albert ML, Bachman DL, Morgan A et al. (1988) Pharmacotherapy for aphasia. Neurology 38:877–879

    PubMed  Google Scholar 

  71. Gupta SR, Mlcoch AG, Scolaro C et al. (1995) Bromocriptine treatment of nonfluent aphasia. Neurology 45:2170–2173

    PubMed  Google Scholar 

  72. Sabe L, Salvarezza F, Garcia CA et al. (1995) A randomized, double-blind, placebo-controlled study of bromocriptine in nonfluent aphasia. Neurology 45:2272–2274

    PubMed  Google Scholar 

  73. Sabe L, Leiguarda R, Starkstein SE (1992) An open-label trial of bromocriptine in nonfluent aphasia. Neurology 42:1637–1638

    PubMed  Google Scholar 

  74. Gold M, VanDam D, Silliman ER (2000) An open-label trial of bromocriptine in nonfluent aphasia: a qualitative analysis of word storage and retrieval. Brain Lang 74:141–156

    Article  PubMed  Google Scholar 

  75. Bragoni M, Altieri M, Di P et al. (2000) Bromocriptine and speech therapy in non-fluent chronic aphasia after stroke. Neurol Sci 21:19–22

    Article  PubMed  Google Scholar 

  76. Gupta SR, Mlcoch AG (1992) Bromocriptine treatment of nonfluent aphasia. Arch Phys Med Rehabil 73:373–376

    Article  PubMed  Google Scholar 

  77. Raymer AM, Bandy D, Adair JC et al. (2001) Effects of bromocriptine in a patient with crossed nonfluent aphasia: a case report. Arch Phys Med Rehabil 82:139–144

    Article  PubMed  Google Scholar 

  78. Loewi O (1921) Über humorale Übertragbarkeit der Herznervenwirkung. Pflügers Arch Ges Physiol 189:239–242

    Google Scholar 

  79. Loewi O (1922) Über humorale Übertragbarkeit der Herznervenwirkung. II. Mitteilung. Pflügers Arch Ges Physiol 193:201–213

    Google Scholar 

  80. Dale HH (1914) The action of certain esters and ethers of choline, and their relation to muscarine. J Pharmacol Exp Ther 6:147–190

    Google Scholar 

  81. Mesulam M (2004) The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn Mem 11:43–49

    Article  PubMed  Google Scholar 

  82. Schneider LS (2004) AD2000: donepezil in Alzheimer’s disease. Lancet 363:2100–2101

    Article  PubMed  Google Scholar 

  83. Gold PE (2003) Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem 80:194–210

    Article  PubMed  Google Scholar 

  84. Furey ML, Pietrini P, Alexander GE et al. (2000) Cholinergic enhancement improves performance on working memory by modulating the functional activity in distinct brain regions: a positron emission tomography regional cerebral blood flow study in healthy humans. Brain Res Bull 51:213–218

    Article  PubMed  Google Scholar 

  85. Aarsland D, Larsen JP, Reinvang I et al. (1994) Effects of cholinergic blockade on language in healthy young women. Implications for the cholinergic hypothesis in dementia of the Alzheimer type. Brain 117(Pt 6):1377–1384

    Google Scholar 

  86. Jacobs D, Shuren J, Gold M et al. (1996) Physostigmine pharmacotherapy for anomia. Neurocase 2:83–91

    Article  Google Scholar 

  87. Disterhoft JF, Matthew OM (2003) Modulation of cholinergic transmission enhances excitability of hippocampal pyramidal neurons and ameliorates learning impairments in aging animals. Neurobiol Learn Mem 80:223–233

    Article  PubMed  Google Scholar 

  88. Yesavage JA, Mumenthaler MS, Taylor JL et al. (2002) Donepezil and flight simulator performance: effects on retention of complex skills. Neurology 59:123–125

    PubMed  Google Scholar 

  89. Krupp LB, Christodoulou C, Melville P et al. (2004) Donepezil improved memory in multiple sclerosis in a randomized clinical trial. Neurology 63:1579–1585

    PubMed  Google Scholar 

  90. Berthier ML, Pujol J, Gironell A et al. (2003) Beneficial effect of donepezil on sensorimotor function after stroke. Am J Phys Med Rehabil 82:725–729

    Article  PubMed  Google Scholar 

  91. Nadeau SE, Behrman AL, Davis SE et al. (2004) Donepezil as an adjuvant to constraint-induced therapy for upper-limb dysfunction after stroke: an exploratory randomized clinical trial. J Rehabil Res Dev 41:525–534

    Article  PubMed  Google Scholar 

  92. Berthier ML, Hinojosa J, Martin MC et al. (2003) Open-label study of donepezil in chronic poststroke aphasia. Neurology 60:1218–1219

    PubMed  Google Scholar 

  93. Muller WE, Eckert GP, Eckert A (1999) Piracetam: novelty in a unique mode of action. Pharmacopsychiatry 32(Suppl 1):2–9

    Google Scholar 

  94. Evers S, Grotemeyer KH (1999) Piracetam and platelets—a review of laboratory and clinical data. Pharmacopsychiatry 32(Suppl 1):44–48

    Google Scholar 

  95. O’Neill MJ, Bleakman D, Zimmerman DM et al. (2004) AMPA receptor potentiators for the treatment of CNS disorders. Curr Drug Target CNS Neurol Disord 3:181–194

    Article  Google Scholar 

  96. Scheuer K, Rostock A, Bartsch R et al. (1999) Piracetam improves cognitive performance by restoring neurochemical deficits of the aged rat brain. Pharmacopsychiatry 32(Suppl 1):10–16

    Google Scholar 

  97. De Deyn PP, Reuck JD, Deberdt W et al. (1997) Treatment of acute ischemic stroke with piracetam. Members of the Piracetam in Acute Stroke Study (PASS) Group. Stroke 28:2347–2352

    PubMed  Google Scholar 

  98. Enderby P, Broeckx J, Hospers W et al. (1994) Effect of piracetam on recovery and rehabilitation after stroke: a double-blind, placebo-controlled study. Clin Neuropharmacol 17:320–331

    PubMed  Google Scholar 

  99. Orgogozo JM (1999) Piracetam in the treatment of acute stroke. Pharmacopsychiatry 32(Suppl 1):25–32

    Google Scholar 

  100. Huber W, Willmes K, Poeck K et al. (1997) Piracetam as an adjuvant to language therapy for aphasia: a randomized double-blind placebo-controlled pilot study. Arch Phys Med Rehabil 78:245–250

    Article  PubMed  Google Scholar 

  101. Kessler J, Thiel A, Karbe H et al. (2000) Piracetam improves activated blood flow and facilitates rehabilitation of poststroke aphasic patients. Stroke 31:2112–2116

    PubMed  Google Scholar 

  102. Arvidsson A, Collin T, Kirik D et al. (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  PubMed  Google Scholar 

  103. Zhang R, Zhang Z, Zhang C et al. (2004) Stroke transiently increases subventricular zone cell division from asymmetric to symmetric and increases neuronal differentiation in the adult rat. J Neurosci 24:5810–5815

    Article  PubMed  Google Scholar 

  104. Raber J, Fan Y, Matsumori Y et al. (2004) Irradiation attenuates neurogenesis and exacerbates ischemia-induced deficits. Ann Neurol 55:381–389

    Article  PubMed  Google Scholar 

  105. Kondziolka D, Wechsler L, Goldstein S et al. (2000) Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55:565–569

    PubMed  Google Scholar 

  106. Meltzer CC, Kondziolka D, Villemagne VL et al. (2001) Serial [18F] fluorodeoxyglucose positron emission tomography after human neuronal implantation for stroke. Neurosurgery 49:586–591

    Article  PubMed  Google Scholar 

  107. McAllister AK, Katz LC, Lo DC (1999) Neurotrophins and synaptic plasticity. Annu Rev Neurosci 22:295–318

    Article  PubMed  Google Scholar 

  108. Schabitz WR, Kollmar R, Schwaninger M et al. (2003) Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34:745–751

    Article  PubMed  Google Scholar 

  109. Schabitz WR, Sommer C, Zoder W et al. (2000) Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke 31:2212–2217

    PubMed  Google Scholar 

Download references

Danksagung

Diese Arbeit wurde unterstützt durch die NRW-Nachwuchsgruppe Kn2000 des Ministeriums für Bildung und Forschung Nordrhein-Westfalen (Fö.1KS9604/0), das Interdisziplinäre Zentrum für Klinische Forschung Münster (IZKF Projekte FG2 und Kne3/074/04), die Volkswagen-Stiftung (Az.: I/80 708) sowie die Stiftung Neuromedizin Münster.

Interessenkonflikt

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Korsukewitz.

Additional information

Catharina Korsukewitz und Caterina Breitenstein haben zu gleichen Teilen zum Manuskript beigetragen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korsukewitz, C., Breitenstein, C., Schomacher, M. et al. Pharmakologische Zusatzbehandlung in der Aphasietherapie. Nervenarzt 77, 403–415 (2006). https://doi.org/10.1007/s00115-005-2006-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-005-2006-6

Schlüsselwörter

Keywords

Navigation