Skip to main content
Log in

Statine zur Behandlung von Erkrankungen des zentralen Nervensystems

Eine Standortbestimmung aus Forschung und Klinik

Statins for treatment of CNS diseases

Status report from research and clinical practice

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

3-Hydroxy-3-Methyglutaryl-Coenzym-A (HMG-CoA)-Reduktase-Inhibitoren, die so genannten „Statine“, sind oral verfügbaren Cholesterinsenker. Sie blockieren die Synthese von L-Mevalonat aus HMG-CoA, einem zentralen Zwischenprodukt der Cholesterinsynthese. Bestimmte L-Mevalonat-Metaboliten werden zudem für die posttranslationale Modifikation von Proteinen benötigt, die nötig für die Zellproliferation und -differenzierung sind. Somit nehmen Statine unabhängig von ihrem cholesterinsenkenden Effekt Einfluss auf wichtige biologische Mechanismen. Im Folgenden werden die potenzielle Anwendung von Statinen bei drei Erkrankungen des zentralen Nervensystems (ZNS) diskutiert: der Multiplen Sklerose (MS), der Demenz vom Alzheimer-Typ (DAT) und dem ischämischen Schlaganfall. Obwohl pathogenetisch hinreichend unterschiedlich, konnte in den entsprechenden Tiermodellen die Wirksamkeit von Statinen belegt werden, die zumeist auf cholesterinunabhängigen Mechanismen beruhen. Für die DAT und den Schlaganfall gibt es bereits Hinweise aus klinischen Fall-Kontroll-Studien über eine Wirksamkeit beim Menschen. Bei der MS liegen positive Ergebnisse aus zwei offenen, nichtplazebokontrollierten Studien vor. Derzeit sind für alle drei Erkrankungen multizentrische, randomisierte, plazobokontrollierte Studien in der Planungs- oder Rekrutierungsphase, um die klinische Wirksamkeit von Statinen zu belegen.

Summary

3-Hydroxy-3-methyglutaryl coenzyme A (HMG-CoA) reductase inhibitors, “statins,” are widely used oral cholesterol-lowering drugs. Statins competitively inhibit HMG-CoA reductase, the enzyme that catalyzes conversion of HMG-CoA to L-mevalonate, a key intermediate in cholesterol synthesis. Certain metabolites of L-mevalonate are also involved in posttranslational modifications of specific proteins with cell proliferation and differentiation properties. Thus, statins have important biologic effects beyond their cholesterol-reducing properties. Here we discuss recent experimental and clinical data that may support a potential role for statins in the treatment of three central nervous system (CNS) neurological diseases: Multiple sclerosis (MS), Alzheimer’s disease (AD), and ischemic stroke. Despite their considerable pathogenic differences, in animal models of these disorders statins have shown beneficial effects. In both stroke and AD cohort studies suggest a beneficial treatment effect in humans; in MS, results from small open-label studies look encouraging. Multicenter, randomized, placebo-controlled clinical trials are in the planning or recruiting stage to evaluate the therapeutic effects of statins in all three disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Anonymous (1995) Cholesterol, diastolic blood pressure, and stroke: 13,000 strokes in 450,000 people in 45 prospective cohorts. Prospective studies collaboration. Lancet 346:1647–1653

    Article  PubMed  Google Scholar 

  2. Aktas O, Waiczies S, Smorodchenko A et al. (2003) Treatment of relapsing paralysis in experimental encephalomyelitis by targeting Th1 cells through atorvastatin. J Exp Med 197:725–733

    Article  CAS  PubMed  Google Scholar 

  3. Amarenco P, Bogousslavsky J, Callahan AS et al. (2003) Design and baseline characteristics of the stroke prevention by aggressive reduction in cholesterol levels (SPARCL) study. Cerebrovasc Dis 16:389–395

    Article  PubMed  Google Scholar 

  4. Amarenco P, Lavallee P, Touboul PJ (2004) Stroke prevention, blood cholesterol, and statins. Lancet Neurol 3:271–278

    Article  CAS  PubMed  Google Scholar 

  5. Atkins D, Psaty BM, Koepsell TD et al. (1993) Cholesterol reduction and the risk for stroke in men. A meta-analysis of randomized, controlled trials. Ann Intern Med 119:136–145

    CAS  PubMed  Google Scholar 

  6. Bellosta S, Ferri N, Bernini F et al. (2000) Non-lipid-related effects of statins. Ann Med 32:164–176

    CAS  PubMed  Google Scholar 

  7. Bellosta S, Via D, Canavesi M et al. (1998) HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Arterioscler Thromb Vasc Biol 18:1671–1678

    CAS  PubMed  Google Scholar 

  8. Black DM, Bakker-Arkema RG, Nawrocki JW (1998) An overview of the clinical safety profile of atorvastatin (lipitor), a new HMG-CoA reductase inhibitor. Arch Intern Med 158:577–584

    Article  CAS  PubMed  Google Scholar 

  9. Byington RP, Davis BR, Plehn JF et al. (2001) Reduction of stroke events with pravastatin: the Prospective Pravastatin Pooling (PPP) Project. Circulation 103:387–392

    CAS  PubMed  Google Scholar 

  10. Chen J, Zhang ZG, Li Y et al. (2003) Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann Neurol 53:743–751

    Article  CAS  PubMed  Google Scholar 

  11. Chopp M, Zhang RL, Chen H et al. (1994) Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke 25:869–875

    CAS  PubMed  Google Scholar 

  12. Collins R, Armitage J, Parish S et al. (2004) Effects of cholesterol-lowering with simvastatin on stroke and other major vascular events in 20,536 people with cerebrovascular disease or other high-risk conditions. Lancet 363:757–767

    Article  PubMed  Google Scholar 

  13. Crisby M, Nordin-Fredriksson G, Shah PK et al. (2001) Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation 103:926–933

    CAS  PubMed  Google Scholar 

  14. Davidson MH (2001) Safety profiles for the HMG-CoA reductase inhibitors: treatment and trust. Drugs 61:197–206

    Article  CAS  PubMed  Google Scholar 

  15. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    Article  CAS  PubMed  Google Scholar 

  16. Duda PW, Schmied MC, Cook SL et al. (2000) Glatiramer acetate (Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest 105:967–976

    CAS  PubMed  Google Scholar 

  17. Endres M, Laufs U, Huang Z et al. (1998) Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci USA 95:8880–8885

    Article  CAS  PubMed  Google Scholar 

  18. Fassbender K, Simons M, Bergmann C et al. (2001) Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci USA 98:5856–5861

    Article  CAS  PubMed  Google Scholar 

  19. Fassbender K, Stroick M, Bertsch T et al. (2002) Effects of statins on human cerebral cholesterol metabolism and secretion of Alzheimer amyloid peptide. Neurology 59:1257–1258

    CAS  PubMed  Google Scholar 

  20. Frears ER, Stephens DJ, Walters CE et al. (1999) The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport 10:1699-1705

    CAS  PubMed  Google Scholar 

  21. Fukumoto Y, Libby P, Rabkin E et al. (2001) Statins alter smooth muscle cell accumulation and collagen content in established atheroma of watanabe heritable hyperlipidemic rabbits. Circulation 103:993–999

    CAS  PubMed  Google Scholar 

  22. Gaist D, Garcia Rodriguez LA, Huerta C et al. (2001) Are users of lipid-lowering drugs at increased risk of peripheral neuropathy? Eur J Clin Pharmacol 56:931–933

    Article  CAS  PubMed  Google Scholar 

  23. Gaist D, Jeppesen U, Andersen M et al. (2002) Statins and risk of polyneuropathy: a case-control study. Neurology 58:1333–1337

    CAS  PubMed  Google Scholar 

  24. Ganne F, Vasse M, Beaudeux JL et al. (2000) Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits urokinase/urokinase-receptor expression and MMP-9 secretion by peripheral blood monocytes—a possible protective mechanism against atherothrombosis. Thromb Haemost 84:680–688

    CAS  PubMed  Google Scholar 

  25. Gearing M, Mori H, Mirra SS (1996) Abeta-peptide length and apolipoprotein E genotype in Alzheimer’s disease. Ann Neurol 39:395–399

    CAS  PubMed  Google Scholar 

  26. Gertz K, Laufs U, Lindauer U et al. (2003) Withdrawal of statin treatment abrogates stroke protection in mice. Stroke 34:551–557

    Article  CAS  PubMed  Google Scholar 

  27. Ginsberg HN (1998) Effects of statins on triglyceride metabolism. Am J Cardiol 81:32B–35B

    Article  CAS  PubMed  Google Scholar 

  28. Glomset JA, Gelb MH, Farnsworth CC (1990) Prenyl proteins in eukaryotic cells: a new type of membrane anchor. Trends Biochem Sci 15:139–142

    Article  CAS  PubMed  Google Scholar 

  29. Greenwood J, Walters CE, Pryce G et al. (2003) Lovastatin inhibits brain endothelial cell Rho-mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB J 17:905–907

    CAS  PubMed  Google Scholar 

  30. Greisenegger S, Mullner M, Tentschert S et al. (2004) Effect of pretreatment with statins on the severity of acute ischemic cerebrovascular events. J Neurol Sci 221:5–10

    Article  CAS  PubMed  Google Scholar 

  31. Hachinski V, Graffagnino C, Beaudry M et al. (1996) Lipids and stroke: a paradox resolved. Arch Neurol 53:303–308

    CAS  PubMed  Google Scholar 

  32. Hodel C (2002) Myopathy and rhabdomyolysis with lipid-lowering drugs. Toxicol Lett 128:159–168

    Article  CAS  PubMed  Google Scholar 

  33. Hoglund K, Wiklund O, Vanderstichele H (2004) Plasma levels of beta-amyloid(1–40), beta-amyloid(1–42), and total beta-amyloid remain unaffected in adult patients with hypercholesterolemia after treatment with statins. Arch Neurol 61:333–337

    Article  PubMed  Google Scholar 

  34. Iwatsubo T, Odaka A, Suzuki N et al. (1994) Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 13:45–53

    Article  CAS  PubMed  Google Scholar 

  35. Jick H, Zornberg GL, Jick SS et al. (2000) Statins and the risk of dementia. Lancet 356:1627–1631

    Article  CAS  PubMed  Google Scholar 

  36. Jonsson N, Asplund K (2001) Does pretreatment with statins improve clinical outcome after stroke? A pilot case-referent study. Stroke 32:1112–1115

    CAS  PubMed  Google Scholar 

  37. Kallen J, Welzenbach K, Ramage P et al. (1999) Structural basis for LFA-1 inhibition upon lovastatin binding to the CD11a I-domain. J Mol Biol 292:1–9

    Article  CAS  PubMed  Google Scholar 

  38. Kastelein JJ, de Groot E, Sankatsing R (2004) Atherosclerosis measured by B-mode ultrasonography: effect of statin therapy on disease progression. Am J Med 116(Suppl 6A):31S–36S

    Google Scholar 

  39. Kieseier BC, Archelos JJ, Hartung HP (2004) Different effects of simvastatin and interferon beta on the proteolytic activity of matrix metalloproteinases. Arch Neurol 61:929–932

    Article  PubMed  Google Scholar 

  40. Kimura M, Kurose I, Russell J et al. (1997) Effects of fluvastatin on leukocyte-endothelial cell adhesion in hypercholesterolemic rats. Arterioscler Thromb Vasc Biol 17:1521–1526

    CAS  PubMed  Google Scholar 

  41. Kobashigawa JA, Katznelson S, Laks H et al. (1995) Effect of pravastatin on outcomes after cardiac transplantation. N Engl J Med 333:621–627

    Article  CAS  PubMed  Google Scholar 

  42. LaRosa JC, He J, Vupputuri S (1999) Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials. JAMA 282:2340–2346

    Article  CAS  PubMed  Google Scholar 

  43. Law MR, Wald NJ, Rudnicka AR (2003) Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ 326:1423

    Article  CAS  PubMed  Google Scholar 

  44. Lehr HA, Seemuller J, Hubner C et al. (1993) Oxidized LDL-induced leukocyte/endothelium interaction in vivo involves the receptor for platelet-activating factor. Arterioscler Thromb 13:1013–1018

    CAS  PubMed  Google Scholar 

  45. Leung BP, Sattar N, Crilly A et al. (2003) A novel anti-inflammatory role for simvastatin in inflammatory arthritis. J Immunol 170:1524–1530

    CAS  PubMed  Google Scholar 

  46. Liao JK (2002) Isoprenoids as mediators of the biological effects of statins. J Clin Invest 110:285–288

    Article  CAS  PubMed  Google Scholar 

  47. Liu T, McDonnell PC, Young PR et al. (1993) Interleukin-1 beta mRNA expression in ischemic rat cortex. Stroke 24:1746–1750

    CAS  PubMed  Google Scholar 

  48. Locatelli S, Lutjohann D, Schmidt HH et al. (2002) Reduction of plasma 24S-hydroxycholesterol (cerebrosterol) levels using high-dosage simvastatin in patients with hypercholesterolemia: evidence that simvastatin affects cholesterol metabolism in the human brain. Arch Neurol 59:213–216

    Article  PubMed  Google Scholar 

  49. Maltese WA (1990) Posttranslational modification of proteins by isoprenoids in mammalian cells. FASEB J 4:3319–3328

    CAS  PubMed  Google Scholar 

  50. Marti-Fabregas J, Gomis M, Arboix A et al. (2004) Favorable outcome of ischemic stroke in patients pretreated with statins. Stroke 35:1117–1121

    Article  CAS  PubMed  Google Scholar 

  51. Matsumoto M, Einhaus D, Gold ES et al. (2004) Simvastatin augments lipopolysaccharide-induced proinflammatory responses in macrophages by differential regulation of the c-Fos and c-Jun transcription factors. J Immunol 172:7377–7384

    CAS  PubMed  Google Scholar 

  52. McKay A, Leung BP, McInnes IB et al. (2004) A novel anti-inflammatory role of simvastatin in a murine model of allergic asthma. J Immunol 172:2903–2908

    CAS  PubMed  Google Scholar 

  53. Monick MM, Powers LS, Butler NS et al. (2003) Inhibition of Rho family GTPases results in increased TNF-alpha production after lipopolysaccharide exposure. J Immunol 171:2625–2630

    CAS  PubMed  Google Scholar 

  54. Montero MT, Hernandez O, Suarez Y et al. (2000) Hydroxymethylglutaryl-coenzyme A reductase inhibition stimulates caspase-1 activity and Th1-cytokine release in peripheral blood mononuclear cells. Atherosclerosis 153:303–313

    Article  CAS  PubMed  Google Scholar 

  55. Naidu A, Xu Q, Catalano R et al. (2002) Secretion of apolipoprotein E by brain glia requires protein prenylation and is suppressed by statins. Brain Res 958:100–111

    Article  CAS  PubMed  Google Scholar 

  56. Nath N, Giri S, Prasad R et al. (2004) Potential targets of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor for multiple sclerosis therapy. J Immunol 172:1273–1286

    CAS  PubMed  Google Scholar 

  57. Neuhaus O, Strasser-Fuchs S, Fazekas F et al. (2002) Statins as immunomodulators: comparison with interferon-beta 1b in MS. Neurology 59:990–997

    CAS  PubMed  Google Scholar 

  58. Neuhaus O, Wiendl H, Kieseier BC et al. (2003) [Cholesterol-reducing medications-a new therapeutic option for multiple sclerosis? Statins as immunomodulators]. Nervenarzt 74:704–707

    Article  CAS  PubMed  Google Scholar 

  59. Notarbartolo A, Davi G, Averna M et al. (1995) Inhibition of thromboxane biosynthesis and platelet function by simvastatin in type IIa hypercholesterolemia. Arterioscler Thromb Vasc Biol 15:247–251

    CAS  PubMed  Google Scholar 

  60. Opper C, Clement C, Schwarz H et al. (1995) Increased number of high sensitive platelets in hypercholesterolemia, cardiovascular diseases, and after incubation with cholesterol. Atherosclerosis 113:211–217

    Article  CAS  PubMed  Google Scholar 

  61. Pahan K, Sheikh FG, Namboodiri AM et al. (1997) Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Invest 100:2671–2679

    CAS  PubMed  Google Scholar 

  62. Polman CH, Killestein J (2004) Statins for the treatment of multiple sclerosis: cautious hope. Lancet 363:1570

    Article  PubMed  Google Scholar 

  63. Quan Sang KH, Levenson J, Megnien JL et al. (1995) Platelet cytosolic Ca2+ and membrane dynamics in patients with primary hypercholesterolemia. Effects of pravastatin. Arterioscler Thromb Vasc Biol 15:759–764

    PubMed  Google Scholar 

  64. Refolo LM, Malester B, LaFrancois J et al. (2000) Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis 7:321–331

    Article  CAS  PubMed  Google Scholar 

  65. Ridker PM (2002) Inflammatory biomarkers, statins, and the risk of stroke: cracking a clinical conundrum. Circulation 105:2583–2585

    Article  PubMed  Google Scholar 

  66. Rockwood K, Kirkland S, Hogan DB et al. (2002) Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol 59:223–227

    Article  PubMed  Google Scholar 

  67. Romano M, Diomede L, Sironi M et al. (2000) Inhibition of monocyte chemotactic protein-1 synthesis by statins. Lab Invest 80:1095–1100

    CAS  PubMed  Google Scholar 

  68. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  69. Sena A, Pedrosa R, Graca MM (2003) Therapeutic potential of lovastatin in multiple sclerosis. J Neurol 250:754–755

    CAS  PubMed  Google Scholar 

  70. Simons M, Keller P, De Strooper B et al. (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 95:6460–6464

    Article  CAS  PubMed  Google Scholar 

  71. Simons M, Schwarzler F, Lutjohann D et al. (2002) Treatment with simvastatin in normocholesterolemic patients with Alzheimer’s disease: a 26-week randomized, placebo-controlled, double-blind trial. Ann Neurol 52:346–350

    Article  CAS  PubMed  Google Scholar 

  72. Sparks DL, Scheff SW, Hunsaker JC et al. (1994) Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol 126:88–94

    Article  CAS  PubMed  Google Scholar 

  73. Staffa JA, Chang J, Green L (2002) Cerivastatin and reports of fatal rhabdomyolysis. N Engl J Med 346:539–540

    Article  Google Scholar 

  74. Stanislaus R, Pahan K, Singh AK et al. (1999) Amelioration of experimental allergic encephalomyelitis in Lewis rats by lovastatin. Neurosci Lett 269:71–74

    Article  CAS  PubMed  Google Scholar 

  75. Stanislaus R, Singh AK, Singh I (2001) Lovastatin treatment decreases mononuclear cell infiltration into the CNS of Lewis rats with experimental allergic encephalomyelitis. J Neurosci Res 66:155–162

    Article  CAS  PubMed  Google Scholar 

  76. Stuve O, Dooley NP, Uhm JH et al. (1996) Interferon beta-1b decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9. Ann Neurol 40:853–863

    CAS  PubMed  Google Scholar 

  77. Thomas T, Thomas G, McLendon C et al. (1996) Beta-amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380:168–171

    Article  CAS  PubMed  Google Scholar 

  78. Vega GL, Weiner MF, Lipton AM et al. (2003) Reduction in levels of 24S-hydroxycholesterol by statin treatment in patients with Alzheimer disease. Arch Neurol 60:510–515

    Article  PubMed  Google Scholar 

  79. Vollmer T, Key L, Durkalski V et al. (2004) Oral simvastatin treatment in relapsing-remitting multiple sclerosis. Lancet 363:1607–1608

    Article  CAS  PubMed  Google Scholar 

  80. Weber C, Erl W, Weber KS et al. (1997) HMG-CoA reductase inhibitors decrease CD11b expression and CD11b-dependent adhesion of monocytes to endothelium and reduce increased adhesiveness of monocytes isolated from patients with hypercholesterolemia. J Am Coll Cardiol 30:1212–1217

    Article  CAS  PubMed  Google Scholar 

  81. Weitz-Schmidt G, Welzenbach K, Brinkmann V et al. (2001) Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med 7:687–692

    Article  CAS  PubMed  Google Scholar 

  82. Wiendl H, Hohlfeld R (2002) Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted treatment trials. BioDrugs 16:183–200

    CAS  PubMed  Google Scholar 

  83. Wolozin B, Kellman W, Ruosseau P et al. (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 57:1439–1443

    Article  CAS  PubMed  Google Scholar 

  84. Woo D, Kissela BM, Khoury JC et al. (2004) Hypercholesterolemia, HMG-CoA reductase inhibitors, and risk of intracerebral hemorrhage: a case-control study. Stroke 35:1360–1364

    Article  CAS  PubMed  Google Scholar 

  85. Xu J, Chen S, Ahmed SH et al. (2001) Amyloid-beta peptides are cytotoxic to oligodendrocytes. J Neurosci 21:RC118

    CAS  PubMed  Google Scholar 

  86. Yankner BA, Dawes LR, Fisher S et al. (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 245:417–420

    CAS  PubMed  Google Scholar 

  87. Youssef S, Stuve O, Patarroyo JC et al. (2002) The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420:78–84

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Dr. Til Menge ist ein Stipendiat der amerikanischen National Multiple Sclerosis Society. Dr. Scott Zamvil wird vom National Institute of Health sowie von der Alexander M. and June L. Maisin Foundation, der Wadsworth Foundation und der Nancy Davis Foundation unterstützt.

Interessenkonflikt

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Stüve.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menge, T., von Büdingen, HC., Zamvil, S.S. et al. Statine zur Behandlung von Erkrankungen des zentralen Nervensystems . Nervenarzt 76, 426–437 (2005). https://doi.org/10.1007/s00115-004-1806-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-004-1806-4

Schlüsselwörter

Keywords

Navigation