Skip to main content
Log in

Die kongenitale Fibrose der äußeren Augenmuskeln (CFEOM) und andere Phänotypen der kongenitalen kranialen Dysinnervationssyndrome (CCDD)

Congenital fibrosis of extraocular muscles (CFEOM) and other phenotypes of congenital cranial dysinnervation syndromes (CCDD)

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Seit kurzem werden verschiedene Syndrome mit kongenitalen, nicht progressiven, sporadisch oder familiär auftretenden Entwicklungsstörungen im Bereich der Hirnnerven und in deren Kerngebieten in der Klassifikation der sog. kongenitalen kranialen Dysinnervationssyndrome (CCDD) zusammengefasst. Eines dieser Syndrome, die kongenitale Fibrose der äußeren Augenmuskeln (CFEOM) ist durch eine meist bilaterale Ophthalmoplegie der vom N. oculomotorius und/oder N. trochlearis innervierten Muskulatur charakterisiert. Im Rahmen einer Übersicht über die CCDD wird die Kasuistik eines 60-jährigen Patienten mit CFEOM vom Typ 1 mit autosomal-dominantem Erbgang und typischem Phänotyp präsentiert, dessen okuläre Symptome jedoch progredient waren. Ursächlich war eine für die CFEOM1 typische C2860→T Mutation im Exon 21 des KIF21A-Gens auf dem Chromosom 12. Weitere CCDD-Syndrome umfassen folgende Phänotypen: die kongenitale Ptosis, das Duane-Syndrom, die horizontale Blickparese mit progressiver Skoliose, die kongenitale Fazialisparese sowie das Möbius-Syndrom. Bislang sind 13 verschiedene Genloci bekannt, die einen dieser Phänotypen aufweisen. Die bislang identifizierten Genprodukte umfassen das Kinesin-Motorprotein Kif21a, den Homeodomänen-Transkriptionsfaktor ARIX, die Carboxypeptidase CPAH und den Zinkfinger-Transkriptionsfaktor SALL4.

Summary

Currently, different syndromes with congenital, nonprogressive, sporadic, or familial developmental abnormalities of the cranial nerves and its nuclei are classified as congenital cranial dysinnervation syndromes (CCDD). One of these syndromes, congenital fibrosis of extraocular muscles (CFEOM), is characterized mainly by bilateral ophthalmoplegia of the oculomotor and trochlear nerves. Within the scope of an overview, the case of a 60-year-old patient with congenital fibrosis of extraocular muscles type 1 (CFEOM1) with autosomal dominant inheritance and typical phenotype, but additional progression of the ocular symptoms, is presented. Symptoms were caused by the common C2860→T mutation in exon 21 of the KIF21A gene on chromosome 12. Further CCDD syndromes include the following phenotypes: congenital ptosis, Duane syndrome, horizontal gaze palsy, Möbius’ syndrome, and congenital facial palsy. There are 13 different known gene loci for one of these phenotypes. Five gene products have been identified: the kinesin motor protein Kif21a, the transcription factors ARIX and SALL4, and the carboxypeptidase CPAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1a,b
Abb. 2

Literatur

  1. Gutowski NJ, Bosley TM, Engle EC (2003) 110th ENMC International Workshop: the congenital cranial dysinnervation disorders (CCDDs). Naarden, The Netherlands, 25–27 October 2002. Neuromuscul Disord 13:573–578

    Article  CAS  PubMed  Google Scholar 

  2. Yamada K, Andrew AC, Chan W-M et al. (2003) Heterozygous mutations of the kinesin KIF21A in congenital fibrosis of the extraocular muscles type 1 (CFEOM1). Nat Genet 35:318–21

    Article  CAS  PubMed  Google Scholar 

  3. Heuck G (1879) Über angeborenen vererbten Beweglichkeitsdefect der Augen. Klin Monatsbl Augenheilkd 17:253–278

    Google Scholar 

  4. Laughlin RC (1956) Congenital fibrosis of the extraocular muscles. Am J Ophthalmol 41:432

    CAS  PubMed  Google Scholar 

  5. Brown HW (1950) Congenital structural muscle abnormalities. In: Allen JH (ed) Strabismus ophthalmic symposium, XI. St Louis, pp 205–236

  6. Engle EC, Goumernov B, McKeown CA et al. (1997) Oculomotor nerve and muscle abnormalities in congenital fibrosis of the extraocular muscles. Ann Neurol 41:314–325

    CAS  PubMed  Google Scholar 

  7. Magli A, De Berardinis T, D’Esposito F et al. (2003) Clinical and surgical data of affected members of a classic CFEOM 1 family. BMC Ophthalmol 3:6

    Article  PubMed  Google Scholar 

  8. Reck AC, Manners R, Hatchwell E (1998) Phenotypic heterogeneity may occur in congenital fibrosis of the extraocularmuscles. Br J Ophthalmol 82:676–679

    CAS  PubMed  Google Scholar 

  9. Engle EC, Kunkel LM, Specht LA et al. (1994) Mapping a gene for congenital fibrosis of the extraocular muscles to the centromeric region of chromosome 12. Nat Genet 7:69–73

    PubMed  Google Scholar 

  10. Wang SM, Zwaan J, Mullaney PB et al. (1998) Congenital fibrosis of the extraocular muscles type 2, an inherited exotropic strabismus fixus, maps to distal 11q13. Am J Hum Genet 63:517–525

    Article  PubMed  Google Scholar 

  11. Apt L, Axelrod RN (1978) Generalized fibrosis of the extraocular muscles. Am J Ophthalmol 85:822–829

    CAS  PubMed  Google Scholar 

  12. Mackey DA, Chan WM, Chan C et al. (2002) Congenital fibrosis of the vertically acting extraocular muscles maps to the FEOM3 locus. Hum Genet 110:510–512

    Article  PubMed  Google Scholar 

  13. Doherty EJ, Macy ME, Wang SM et al. (1999) CFEOM3: a new extraocular congenital fibrosis syndrome that maps to 16q24.2-q24.3. Invest Ophthalmol Vis Sci 40:1687–1694

    CAS  PubMed  Google Scholar 

  14. Brodsky MC, Pollock SC, Buckley EG (1989) Neural misdirection in congenital ocular fibrosis syndrome: implications and pathogenesis. J Pediatr Ophthalmol Strabismus 26:159–161

    PubMed  Google Scholar 

  15. Hamed LM, Dennehy PJ, Lingua RW (1990) Synergistic divergence and jaw-winking phenomenon. J Pediatr Ophthalmol 27:88–90

    CAS  Google Scholar 

  16. Gottlob I, Jain S, Engle EC (2002) Elevation of one eye during tooth brushing. Am J Ophthalmol 134:459–460

    Article  PubMed  Google Scholar 

  17. Pieh C, Goebel HH, Engle EC et al. (2003) Congenital fibrosis syndrome associated with central nervous system abnormalities. Graefes Arch Clin Exp Ophthalmol 241:546–553

    Article  PubMed  Google Scholar 

  18. Traboulsi E, Jaafar M, Kattan H et al. (1993) Congenital fibrosis of the extraocular muscles: report of 24 cases illustrating the clinical spectrum and surgical managment. Am Orthoptic J 43:45–53

    Google Scholar 

  19. Houtman WA, van Weerden TW, Robunson PH et al. (1986) Hereditary congenital external ophthalmoplegia. Ophthalmoplegica 193:207–218

    CAS  Google Scholar 

  20. Laughlin RC (1956) Congenital fibrosis of the extraocular muscles. A report of six cases. Am J Ophthal 41:432–438

    CAS  PubMed  Google Scholar 

  21. Porter JD, Baker RS (1997) Absence of oculomotor and trochlear motoneurons leads to altered extraocular muscle development in the Wnt-1 null mutant mouse. Dev Brain Res 100:121–126

    Article  CAS  Google Scholar 

  22. Hupp SL, Williams JP, Curran JE (1990) Computerized tomography in the diagnosis of the congenital fibrosis syndrome. J Clin Neuroophthalmol 10:135–139

    CAS  PubMed  Google Scholar 

  23. Hertle RW, Katowitz JA, Young TL et al. (1992) Congenital unilateral fibrosis, blepharoptosis and enophthalmos syndrome. Ophthalmology 99:347–355

    CAS  PubMed  Google Scholar 

  24. Flaherty MP, Grattan-Smith P, Steinberg A et al. (2001) Congenital fibrosis of the extraocular muscles associated with cortical dysplasia and maldevelopment of the basal ganglia. Ophthalmology 108:1313–1322

    Article  PubMed  Google Scholar 

  25. Pollack K, Müller-Holz (2003) Okuläres kongenitales Fibrosesyndrom mit mentaler Retardierung—Fallvorstellung einer Familie. Klin Monatsbl Augenheilkd 220(Suppl 3):10

  26. Guo S, Brush J, Teraoka H et al. (1999) Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8 and the homeodomain protein soulless/Phox2a. Neuron 24:555–566

    CAS  PubMed  Google Scholar 

  27. Nakano M, Yamada K, Fain J et al. (2001) Homozygous mutations in ARIX (PHOX2A) result in congenital fibrosis of the extraocular muscles type 2. Nat Genet 29:315–320

    Article  CAS  PubMed  Google Scholar 

  28. Huber A (1974) Electrophysiology of the retraction syndromes. Br J Ophthalmol 58:293–300

    CAS  PubMed  Google Scholar 

  29. Chung M, Stout JT, Borchert MS (1997) Clinical diversity of hereditary Duane’s retraction syndrome. Ophthalmology 107:500–503

    Article  Google Scholar 

  30. Holmes JM, Cronin CM (1991) Duane syndrome associated with oculocutaneous albinism. J Pediatr Ophthalmol Strabismus 28:32–34

    CAS  PubMed  Google Scholar 

  31. Hotchkiss MG, Miller NR, Clark AM et al. (1980) Bilateral Duane’s retraction syndrome: a clinical-pathologic case report. Arch Ophthalmol 98:870–874

    CAS  PubMed  Google Scholar 

  32. Ozkurt H, Basak M, Oral Y et al. (2003) Magnetic resonance imaging in Duane’s retraction syndrome. J Pediatr Ophthalmol Strabismus 40:19–22

    PubMed  Google Scholar 

  33. Vincent C, Kalatzis V, Compain S et al. (1994) A proposed new contiguous gene syndrome on 8q consists of branchio-oto-renal (BOR) syndrome, Duane syndrome, a dominant form of hydrocephalus and trapez aplasia; implications for the mapping of the BOR gene. Hum Mol Genet 3:1859–1866

    CAS  PubMed  Google Scholar 

  34. Pizzuti A, Calabrese G, Bozzali M et al. (2002) A peptidase gene in chromosome 8q is disrupted by a balanced translocation in a Duane syndrome patient. Invest Ophthalmol Vis Sci 43:3609–3612

    PubMed  Google Scholar 

  35. Evans JC, Frayling TM, Ellard S et al. (2000) Confirmation of linkage of Duane’s syndrome and refinement of the locus to an 8.8-cM interval on chromosome 2q31. Hum Genet 106:636–638

    Article  CAS  PubMed  Google Scholar 

  36. Okihiro MM, Tasaki T, Nakano KK et al. (1977) Duane syndrome and congenital upper-limb anomalies. A familial occurrence. Arch Neurol 34:174–179

    CAS  PubMed  Google Scholar 

  37. Al-Baradie R, Yamada K, St Hilaire C et al. (2002) Duane radial ray syndrome (Okihiro syndrome) maps to 20q13 and results from mutations in SALL4, a new member of the SAL family. Am J Hum Genet 71:1195–1199

    Article  CAS  PubMed  Google Scholar 

  38. Kohlhase J, Heinrich M, Schubert L et al. (2002) Okihiro syndrome is caused by SALL4 mutations. Hum Mol Genet 11:2979–2987

    Article  CAS  PubMed  Google Scholar 

  39. Möbius PJ (1888) Über angeborenen doppelseitige Abducens-Facialis-Lähmung. Münch Med Wochenschr 35:91–94

    Google Scholar 

  40. Jaradeh S, D’Cruz O, Howard JF et al. (1996) Möbius syndrome: electrophysiologic studies in seven cases. Muscle Nerve 19:1148–1153

    Article  CAS  PubMed  Google Scholar 

  41. Pedraza S, Gamez J, Rovira A et al. (2000) MRI findings in Mobius syndrome: correlation with clinical features. Neurology 55:1058–1060

    CAS  PubMed  Google Scholar 

  42. Lengyel D, Zaunbauer W, Keller E et al. (2000) Möbius syndrome: MRI findings in three cases. J Pediatr Ophthalmol Strabismus 37:305–308

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Hanisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanisch, F., Bau, V. & Zierz, S. Die kongenitale Fibrose der äußeren Augenmuskeln (CFEOM) und andere Phänotypen der kongenitalen kranialen Dysinnervationssyndrome (CCDD). Nervenarzt 76, 395–402 (2005). https://doi.org/10.1007/s00115-004-1742-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-004-1742-3

Schlüsselwörter

Keywords

Navigation