Skip to main content
Log in

Neue Einblicke in die Immunpathogenese der Multiplen Sklerose

  • Übersicht
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die Multiple Sklerose (MS) ist eine chronisch-entzündliche und demyelinisierende Erkrankung des zentralen Nervensystems (ZNS). Obgleich das Immunsystem eine wichtige Rolle in der Pathogenese der Erkrankung einnimmt, sind die Zielantigene der Immunantwort bisher noch weitgehend unbekannt und die zur Läsion führenden Pathomechanismen nur teilweise verstanden. Kürzlich veröffentlichte Studien haben jedoch wesentlich zum besseren Verständnis der Erkrankung beigetragen und neue Einsichten hinsichtlich Ätiologie und Pathogenese der MS geliefert. Der Artikel gibt einen Überblick über die Rolle des Immunsystems bei der Manifestation und Entfaltung der Erkrankung unter Einbeziehung bestehender und neuer pathogenetischer Konzepte. Abschließend diskutieren wir—unter Berücksichtigung neuer wissenschaftlicher Methoden—zukünftige Forschungsstrategien zur Entschlüsselung der Ätiologie und Pathogenese der MS.

Summary

Multiple sclerosis is a chronic inflammatory and demyelinating disease of the central nervous system. Although the immune system seems to play an important role in its pathogenesis, target antigens are still uncertain and pathways leading to tissue destruction have not been fully elucidated. Recent studies have significantly contributed to better understanding of the disease process and broadened our view on possible scenarios of disease initiation and progression. Here, we review the role of the immune system in the manifestation and evolution of MS and discuss different pathogenetic concepts. We conclude with an outlook on future strategies for identifying the cause of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1a–c.
Abb. 2.
Abb. 3a–c.

Literatur

  1. Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2:734–44

    Article  CAS  PubMed  Google Scholar 

  2. Archelos JJ, Hartung HP (2000) Pathogenetic role of autoantibodies in neurological diseases. Trends Neurosci 23:317–27

    Article  CAS  PubMed  Google Scholar 

  3. Archelos JJ, Storch MK, Hartung HP (2000) The role of B cells and autoantibodies in multiple sclerosis. Ann Neurol 47:694–706

    Article  CAS  PubMed  Google Scholar 

  4. Ascherio A, Munger KL, Lennette ET et al. (2001) Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286:3083–8

    Article  CAS  PubMed  Google Scholar 

  5. Babbe H, Roers A, Waisman A et al. (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192:393–404

    Article  CAS  PubMed  Google Scholar 

  6. Baranzini SE, Jeong MC, Butunoi C et al. (1999) B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J Immunol 163:5133–44

    CAS  PubMed  Google Scholar 

  7. Barone FC, Feuerstein GZ (1999) Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 19:819–34

    CAS  PubMed  Google Scholar 

  8. Becher B, Durell BG, Miga AV et al. (2001) The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J Exp Med 193:967–74

    Article  CAS  PubMed  Google Scholar 

  9. Benoist C, Mathis D (2001) Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nat Immunol 2:797–801

    Google Scholar 

  10. Bettelli E, Das MP, Howard ED et al. (1998) IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J Immunol 161:3299–306

    CAS  PubMed  Google Scholar 

  11. Bieber AJ, Warrington A, Pease L.R. et al. (2002) Humoral autoimmunity as a mediator of CNS repair. Trends Neurosci 24, 39–44

    Google Scholar 

  12. Bielekova B, Goodwin B, Richert N et al. (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 6:1167–75

    CAS  PubMed  Google Scholar 

  13. Bitsch A, Schuchardt J, Bunkowski S et al. (2000) Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123:1174–83

    Article  PubMed  Google Scholar 

  14. Brex PA, Ciccarelli O, O'Riordan JI et al. (2002) A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med 346:158–64

    Article  PubMed  Google Scholar 

  15. Buljevac D, Flach HZ, Hop WC et al. (2002) Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain 125:952–60

    Article  CAS  PubMed  Google Scholar 

  16. Burgoon MP, Owens GP, Carlson S et al. (2001) Antigen discovery in chronic human inflammatory central nervous system disease: panning phage-displayed antigen libraries identifies the targets of central nervous system-derived IgG in subacute sclerosing panencephalitis. J Immunol 167:6009–14

    CAS  PubMed  Google Scholar 

  17. Carbone KM, Rubin SA, Nishino Y, Pletnikov MV (2001) Borna disease: virus-induced neurobehavioral disease pathogenesis. Curr Opin Microbiol 4:467–75

    Article  CAS  PubMed  Google Scholar 

  18. Cepok S, Jacobsen M, Schock S et al. (2001) Patterns of cerebrospinal fluid pathology correlate with disease progression in multiple sclerosis. Brain 124:2169–76

    Article  CAS  PubMed  Google Scholar 

  19. Chapman J, Vinokurov S, Achiron A et al. (2001) APOE genotype is a major predictor of long-term progression of disability in MS. Neurology 56:312–6

    CAS  PubMed  Google Scholar 

  20. Colombo M, Dono M, Gazzola P et al. (2000) Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J Immunol 164:2782–9

    CAS  PubMed  Google Scholar 

  21. Compston A, Coles A (2002) Multiple sclerosis. Lancet 359:1221–31

    Article  PubMed  Google Scholar 

  22. Confavreux C, Vukusic S, Adeleine P (2003) Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain 126:770–82

    Article  PubMed  Google Scholar 

  23. Cross AH (2000) MS: the return of the B cell. Neurology 54:1214–5

    CAS  PubMed  Google Scholar 

  24. Cross AH, Trotter JL, Lyons J (2001) B cells and antibodies in CNS demyelinating disease. J Neuroimmunol 112:1–14

    Article  CAS  PubMed  Google Scholar 

  25. Cserr HF, Knopf PM (1992) Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today 13:507–12

    CAS  PubMed  Google Scholar 

  26. Cuzner ML, Opdenakker G (1999) Plasminogen activators and matrix metalloproteases, mediators of extracellular proteolysis in inflammatory demyelination of the central nervous system. J Neuroimmunol 94:1–14

    Article  CAS  PubMed  Google Scholar 

  27. Dandekar AA, Wu GF, Pewe L, Perlman S (2001) Axonal damage is T cell mediated and occurs concomitantly with demyelination in mice infected with a neurotropic coronavirus. J Virol 75:6115–20

    Article  CAS  PubMed  Google Scholar 

  28. del Zoppo G, Ginis I, Hallenbeck JM et al. (2000) Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol 10:95–112

    PubMed  Google Scholar 

  29. Ebers GC, Dyment DA (1998) Genetics of multiple sclerosis. Semin Neurol 18:295–9

    CAS  PubMed  Google Scholar 

  30. Ebers GC, Sadovnick AD, Risch NJ (1995) A genetic basis for familial aggregation in multiple sclerosis. Canadian Collaborative Study Group. Nature 377:150–1

    Google Scholar 

  31. Ebers GC, Yee IM, Sadovnick AD, Duquette P (2000) Conjugal multiple sclerosis: population-based prevalence and recurrence risks in offspring. Canadian Collaborative Study Group. Ann Neurol 48:927–31

    Article  CAS  PubMed  Google Scholar 

  32. Fazekas F, Strasser-Fuchs S, Kollegger H et al. (2001) Apolipoprotein E epsilon 4 is associated with rapid progression of multiple sclerosis. Neurology 57:853–7

    CAS  PubMed  Google Scholar 

  33. Ferber IA, Brocke S, Taylor-Edwards C et al. (1996) Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol 156:5–7

    CAS  PubMed  Google Scholar 

  34. Fox NC, Jenkins R, Leary SM et al. (2000) Progressive cerebral atrophy in MS: a serial study using registered, volumetric MRI. Neurology 54:807–12

    CAS  PubMed  Google Scholar 

  35. Frei K, Eugster HP, Bopst M et al. (1997) Tumor necrosis factor alpha and lymphotoxin alpha are not required for induction of acute experimental autoimmune encephalomyelitis. J Exp Med 185:2177–82

    Article  CAS  PubMed  Google Scholar 

  36. Gale CR, Martyn CN (1995) Migrant studies in multiple sclerosis. Prog Neurobiol 47:425–48

    Article  CAS  PubMed  Google Scholar 

  37. Genain CP, Abel K, Belmar N et al. (1996) Late complications of immune deviation therapy in a nonhuman primate. Science 274:2054–7

    Article  CAS  PubMed  Google Scholar 

  38. Genain CP, Cannella B, Hauser SL, Raine CS (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 5:170–5

    Article  CAS  PubMed  Google Scholar 

  39. Gilden DH, Burgoon MP, Kleinschmidt-DeMasters BK et al. (2001) Molecular immunologic strategies to identify antigens and b-cell responses unique to multiple sclerosis. Arch Neurol 58:43–8

    Article  CAS  PubMed  Google Scholar 

  40. Gold R, Hartung HP, Lassmann H (1997) T-cell apoptosis in autoimmune diseases: termination of inflammation in the nervous system and other sites with specialized immune-defense mechanisms. Trends Neurosci 20:399–404

    Article  CAS  PubMed  Google Scholar 

  41. Greve B, Magnusson CG, Melms A, Weissert R (2001) Immunoglobulin isotypes reveal a predominant role of type 1 immunity in multiple sclerosis. J Neuroimmunol 121:120–5

    Article  CAS  PubMed  Google Scholar 

  42. Grimaldi LM, Roos RP, Devare SG et al. (1988) HTLV-I-associated myelopathy: oligoclonal immunoglobulin G bands contain anti-HTLV-I p24 antibody. Ann Neurol 24:727–31

    CAS  PubMed  Google Scholar 

  43. Hafler DA, Saadeh MG, Kuchroo VK et al. (1996) TCR usage in human and experimental demyelinating disease. Immunol Today 17:152–9

    Article  CAS  PubMed  Google Scholar 

  44. Haring J, Perlman S (2001) Mouse hepatitis virus. Curr Opin Microbiol 4:462–6

    Article  CAS  PubMed  Google Scholar 

  45. Hartung HP, Gonsette RE, König N et al. ( 2002) Mitoxantrone in progressive multiple sclerosis: a placebo-controlled double-blind, randomized, multicentre trial. Lancet 29:1133–1134

    Google Scholar 

  46. Hartung HP, Kieseier BC (2000) The role of matrix metalloproteinases in autoimmune damage to the central and peripheral nervous system. J Neuroimmunol 107:140–7

    CAS  PubMed  Google Scholar 

  47. Hemmer B, Archelos JJ, Hartung HP (2002) New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci 3:291–301

    Article  CAS  PubMed  Google Scholar 

  48. Hemmer B, Fleckenstein BT, Vergelli M et al. (1997) Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J Exp Med 185:1651–9

    CAS  PubMed  Google Scholar 

  49. Hemmer B, Vergelli M, Pinilla C et al. (1998) Probing degeneracy in T-cell recognition using peptide combinatorial libraries. Immunol Today 19:163–8

    Google Scholar 

  50. Hemmer B, Vergelli M, Tranquill L et al. (1997) Human T-cell response to myelin basic protein peptide (83–99): extensive heterogeneity in antigen recognition, function, and phenotype. Neurology 49:1116–26

    CAS  PubMed  Google Scholar 

  51. Hiemstra HS, Duinkerken G, Benckhuijsen WE et al. (1997) The identification of CD4+ T cell epitopes with dedicated synthetic peptide libraries. Proc Natl Acad Sci U S A 94:10313–8

    CAS  PubMed  Google Scholar 

  52. Huseby ES, Liggitt D, Brabb T et al. (2001) A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med 194:669–76

    Article  CAS  PubMed  Google Scholar 

  53. Jacobsen M, Cepok S, Quak E et al. (2002) Oligoclonal expansion of memory CD8+ T cells in the cerebrospinal fluid from multiple sclerosis patients. Brain 125:538–50

    Article  PubMed  Google Scholar 

  54. Jacobsen M, Zhou D, Cepok S et al.. Clonal accumulation of activated CD8+ T cells in the central nervous system during the early phase of neuroborreliosis. J.Infect.Dis. 187, 963–973. 2003

    Google Scholar 

  55. Jurewicz A, Biddison WE, Antel JP (1998) MHC class I-restricted lysis of human oligodendrocytes by myelin basic protein peptide-specific CD8 T lymphocytes. J Immunol 160:3056–9

    CAS  PubMed  Google Scholar 

  56. Kabat EA, Moore DH, Landow H (1942) An electrophoretic study of the protein components in cerebrospinal fluid and their reletionship to the serum proteins. J Clin Invest 21:571–7

    CAS  Google Scholar 

  57. Kappos L, Comi G, Panitch H et al. (2000) Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nat Med 6:1176–82

    CAS  PubMed  Google Scholar 

  58. Kassiotis G, Pasparakis M, Kollias G, Probert L (1999) TNF accelerates the onset but does not alter the incidence and severity of myelin basic protein-induced experimental autoimmune encephalomyelitis. Eur J Immunol 29:774–80

    Article  CAS  PubMed  Google Scholar 

  59. Kerschensteiner M, Gallmeier E, Behrens L et al. (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189:865–70

    Google Scholar 

  60. Kersh GJ, Allen PM (1996) Essential flexibility in the T-cell recognition of antigen. Nature 380:495–8

    Google Scholar 

  61. Kieseier BC, Seifert T, Giovannoni G, Hartung HP (1999) Matrix metalloproteinases in inflammatory demyelination: targets for treatment. Neurology 53:20–5

    CAS  PubMed  Google Scholar 

  62. Kremenchutzky M, Cottrell D, Rice G et al. (1999) The natural history of multiple sclerosis: a geographically based study. 7. Progressive-relapsing and relapsing-progressive multiple sclerosis: a re-evaluation. Brain 122:1941–50

    Article  PubMed  Google Scholar 

  63. Kuchroo VK, Anderson AC, Waldner H et al. (2002) T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Annu Rev Immunol 20:101–23.:101–23

    Google Scholar 

  64. Kuhlmann T, Lingfeld G, Bitsch A et al. (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–12

    Article  PubMed  Google Scholar 

  65. Kurtzke JF (2000) Epidemiology of multiple sclerosis. Does this really point toward an etiology? Lectio Doctoralis. Neurol Sci 21:383–403

    Article  CAS  PubMed  Google Scholar 

  66. Lafaille JJ, Keere FV, Hsu AL et al. (1997) Myelin basic protein-specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J Exp Med 186:307–12

    Article  CAS  PubMed  Google Scholar 

  67. Lassmann H, Bruck W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7:115–21.

    Article  CAS  PubMed  Google Scholar 

  68. Lassmann H, Raine CS, Antel J, Prineas JW (1998) Immunopathology of multiple sclerosis: report on an international meeting held at the Institute of Neurology of the University of Vienna. J Neuroimmunol 86:213–7

    Article  CAS  PubMed  Google Scholar 

  69. Lehmann PV, Sercarz EE, Forsthuber T et al. (1993) Determinant spreading and the dynamics of the autoimmune T-cell repertoire. Immunol Today 14:203–8

    Article  CAS  PubMed  Google Scholar 

  70. Linington C, Bradl M, Lassmann H et al. (1988) Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 130:443–54

    CAS  PubMed  Google Scholar 

  71. Lock C, Hermans G, Pedotti R et al. (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8:500–8

    Article  CAS  PubMed  Google Scholar 

  72. Losseff NA, Wang L, Lai HM et al. (1996) Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain 119:2009–19

    PubMed  Google Scholar 

  73. Losy J, Mehta PD, Wisniewski HM (1990) Identification of IgG subclasses' oligoclonal bands in multiple sclerosis CSF. Acta Neurol Scand 82:4–8

    CAS  PubMed  Google Scholar 

  74. Lucchinetti C, Bruck W, Parisi J et al. (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–17

    Article  CAS  PubMed  Google Scholar 

  75. Lucchinetti CF, Mandler RN, McGavern D et al. (2002) A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain 125:1450–61

    Article  PubMed  Google Scholar 

  76. Martin R, McFarland HF, McFarlin DE (1992) Immunological aspects of demyelinating diseases. Annu Rev Immunol 10:153–87

    CAS  PubMed  Google Scholar 

  77. Medana I, Li Z, Flugel A et al. (2001) Fas ligand (CD95L) protects neurons against perforin-mediated T lymphocyte cytotoxicity. J Immunol 167:674–81

    CAS  PubMed  Google Scholar 

  78. Medana I, Martinic MA, Wekerle H, Neumann H (2001) Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes. Am J Pathol 159:809–15

    CAS  PubMed  Google Scholar 

  79. Medana IM, Esiri MM (2003) Axonal damage: a key predictor of outcome in human CNS diseases. Brain 126:515–30

    Article  CAS  PubMed  Google Scholar 

  80. Miller DH, Grossman RI, Reingold SC, McFarland HF (1998) The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain 121:3–24

    PubMed  Google Scholar 

  81. Moalem G, Leibowitz-Amit R, Yoles E et al. (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5:49–55

    CAS  PubMed  Google Scholar 

  82. Muraro PA, Wandinger KP, Bielekova B et al. (2003) Molecular tracking of antigen-specific T cell clones in neurological immune-mediated disorders. Brain 126:20–31

    Article  PubMed  Google Scholar 

  83. Neuhaus O, Archelos JJ, Hartung HP (2003) Immunomodulation in multiple sclerosis: from immunosuppression to neuroprotection. Trends Pharmacol Sci 24:131–8

    Article  CAS  PubMed  Google Scholar 

  84. Neuhaus O, Farina C, Yassouridis A et al. (2000) Multiple sclerosis: comparison of copolymer-1- reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci U S A 20 (97):7452–7

    Article  Google Scholar 

  85. Nguyen MH, Julien JP, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3:216–228

    Google Scholar 

  86. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–52

    Article  CAS  PubMed  Google Scholar 

  87. Oksenberg JR, Baranzini SE, Barcellos LF, Hauser SL (2001) Multiple sclerosis: genomic rewards. J Neuroimmunol 113:171–84

    Article  CAS  PubMed  Google Scholar 

  88. Olsson T, Dahlman I, Wallstrom E et al. (2000) Genetics of rat neuroinflammation. J Neuroimmunol 107:191–200

    Article  CAS  PubMed  Google Scholar 

  89. Owens GP, Burgoon MP, Anthony J et al. (2001) The immunoglobulin G heavy chain repertoire in multiple sclerosis plaques is distinct from the heavy chain repertoire in peripheral blood lymphocytes. Clin Immunol 98:258–63

    Article  CAS  PubMed  Google Scholar 

  90. Owens T, Wekerle H, Antel J (2001) Genetic models for CNS inflammation. Nat Med 7:161–6

    Article  CAS  PubMed  Google Scholar 

  91. Panitch HS, Hirsch RL, Schindler J, Johnson KP (1987) Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37:1097–102

    CAS  PubMed  Google Scholar 

  92. Paterson P.Y (1960) Transfer of allergic encephalomyelitis in rats by means of lymph node cells. J Exp Med 111:119–35

    CAS  Google Scholar 

  93. Prineas JW, Kwon EE, Cho ES et al. (2001) Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol 50:646–57

    Article  CAS  PubMed  Google Scholar 

  94. Qin Y, Duquette P, Zhang Y et al. (1998) Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis. J Clin Invest 102:1045–50

    CAS  PubMed  Google Scholar 

  95. Ramakrishna C, Stohlman SA, Atkinson RD et al. (2002) Mechanisms of Central Nervous System Viral Persistence: the Critical Role of Antibody and B Cells. J Immunol 168:1204–11

    CAS  PubMed  Google Scholar 

  96. Reindl M, Linington C, Brehm U et al. (1999) Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain 122:2047–56

    Article  PubMed  Google Scholar 

  97. Remlinger P (1928) Les paralysies du traitement antirabique. Annals Inst Pasteur 55:35–68

    Google Scholar 

  98. Rieckmann P, Mäurer M (2002) Anti-inflammatory strategies to prevent axonal injury in multiple sclerosis. Curr Opin Neurol 15:361–370

    Google Scholar 

  99. Rivers TM, Sprunt D.H., Gerry B.P (1933) Observations on attemps to produce acute disseminated encephalomyelitis in monkeys. J Exp Med 58:39–53

    Google Scholar 

  100. Rocken M, Racke M, Shevach EM (1996) IL-4-induced immune deviation as antigen-specific therapy for inflammatory autoimmune disease. Immunol Today 17:225–31

    Article  CAS  PubMed  Google Scholar 

  101. Rosati G (2001) The prevalence of multiple sclerosis in the world: an update. Neurol Sci 22:117–39

    Article  CAS  PubMed  Google Scholar 

  102. Schmied M, Breitschopf H, Gold R et al. (1993) Apoptosis of T lymphocytes in experimental autoimmune encephalomyelitis. Evidence for programmed cell death as a mechanism to control inflammation in the brain. Am J Pathol 143:446–52

    CAS  PubMed  Google Scholar 

  103. Sibley WA, Bamford CR, Clark K (1985) Clinical viral infections and multiple sclerosis. Lancet 1:1313–5

    CAS  PubMed  Google Scholar 

  104. Smith-Jensen T, Burgoon MP, Anthony J et al. (2000) Comparison of immunoglobulin G heavy-chain sequences in MS and SSPE brains reveals an antigen-driven response. Neurology 54:1227–32

    CAS  PubMed  Google Scholar 

  105. Soldan SS, Berti R, Salem N et al. (1997) Association of human herpes virus 6 (HHV-6) with multiple sclerosis: increased IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA. Nat Med 3:1394–7

    CAS  PubMed  Google Scholar 

  106. Sriram S, Stratton CW, Yao S et al. (1999) Chlamydia pneumoniae infection of the central nervous system in multiple sclerosis. Ann Neurol 46:6–14

    Article  CAS  PubMed  Google Scholar 

  107. Stadelmann C, Kerschensteiner M, Misgeld T et al. (2002) BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 125:75–85

    Google Scholar 

  108. Steinman L (1996) Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85:299–302

    CAS  PubMed  Google Scholar 

  109. Steinman L (1999) Assessment of animal models for MS and demyelinating disease in the design of rational therapy. Neuron 24:511–4

    CAS  PubMed  Google Scholar 

  110. Stohlman SA, Bergmann CC, Lin MT et al. (1998) CTL effector function within the central nervous system requires CD4+ T cells. J Immunol 160:2896–904

    CAS  PubMed  Google Scholar 

  111. Stohlman SA, Hinton DR (2001) Viral induced demyelination. Brain Pathol 11:92–106

    CAS  PubMed  Google Scholar 

  112. Sun D, Whitaker JN, Huang Z et al. (2001) Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J Immunol 166:7579–87

    CAS  PubMed  Google Scholar 

  113. Tabi Z, McCombe PA, Pender MP (1994) Apoptotic elimination of V beta 8.2+ cells from the central nervous system during recovery from experimental autoimmune encephalomyelitis induced by the passive transfer of V beta 8.2+ encephalitogenic T cells. Eur J Immunol 24:2609–17

    CAS  PubMed  Google Scholar 

  114. The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group (1999) TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology 53:457–65

    PubMed  Google Scholar 

  115. Trapp BD, Peterson J, Ransohoff RM et al. (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–85

    Article  CAS  PubMed  Google Scholar 

  116. van Oosten BW, Barkhof F, Truyen L et al. (1996) Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47:1531–4

    PubMed  Google Scholar 

  117. van Oosten BW, Lai M, Hodgkinson S et al. (1997) Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology 49:351–7

    PubMed  Google Scholar 

  118. Vanderlugt CL, Miller SD (2002) Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2:85–95

    Article  CAS  PubMed  Google Scholar 

  119. Vandvik B, Norrby E, Nordal HJ, Degre M (1976) Oligoclonal measles virus-specific IgG antibodies isolated from cerebrospinal fluids, brain extracts, and sera from patients with subacute sclerosing panencephalitis and multiple sclerosis. Scand J Immunol 5:979–92

    CAS  PubMed  Google Scholar 

  120. Vartdal F, Vandvik B, Michaelsen TE et al. (1982) Neurosyphilis: intrathecal synthesis of oligoclonal antibodies to Treponema pallidum. Ann Neurol 11:35–40

    CAS  PubMed  Google Scholar 

  121. Walsh MJ, Tourtellotte WW (1986) Temporal invariance and clonal uniformity of brain and cerebrospinal IgG, IgA, and IgM in multiple sclerosis. J Exp Med 163:41–53

    CAS  PubMed  Google Scholar 

  122. Wang FI, Stohlman SA, Fleming JO (1990) Demyelination induced by murine hepatitis virus JHM strain (MHV-4) is immunologically mediated. J Neuroimmunol 30:31–41

    Article  CAS  PubMed  Google Scholar 

  123. Wekerle H, Kojima K, Lannes-Vieira J et al. (1994) Animal models. Ann Neurol 36 [Suppl]:47–53

  124. Whitney LW, Ludwin SK, McFarland HF, Biddison WE (2001) Microarray analysis of gene expression in multiple sclerosis and EAE identifies 5-lipoxygenase as a component of inflammatory lesions. J Neuroimmunol 121:40–8

    Article  CAS  PubMed  Google Scholar 

  125. Wiendl H, Hohlfeld R (2002) Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted treatment trials. BioDrugs 16:183–200

    CAS  PubMed  Google Scholar 

  126. Willenborg DO, Fordham S, Bernard CC et al. (1996) IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol 157:3223–7

    CAS  PubMed  Google Scholar 

  127. Wucherpfennig KW, Strominger JL (1995) Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80:695–705

    CAS  PubMed  Google Scholar 

  128. Yong VW (2002) Differential mechanisms of action of interferon-beta and glatiramer aetate in MS. Neurology 59:802–8

    CAS  PubMed  Google Scholar 

  129. Zamvil SS, Steinman L (1990) The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol 8:579–621.:579–621

    Google Scholar 

Download references

Danksagung

Die Autoren danken ihren Patienten für ihren Betrag zur klinischen Forschung. Wir danken außerdem der gemeinnützigen Hertie-Stiftung für die kontinuierliche Unterstützung der Forschungspojekte. Bernhard Hemmer ist ein Heisenberg-Stipendiat der Deutschen Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosche, B., Kieseier, B., Hartung, HP. et al. Neue Einblicke in die Immunpathogenese der Multiplen Sklerose. Nervenarzt 74, 654–663 (2003). https://doi.org/10.1007/s00115-003-1534-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-003-1534-1

Schlüsselwörter

Keywords

Navigation