Skip to main content
Log in

Chemical composition and antimicrobial activity of honeybee (Apis mellifera ligustica) propolis from subtropical eastern Australia

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Propolis is a material manufactured by bees and contains beeswax, bee salivary secretions and plant resins. Propolis preparations have been used for millennia by humans in food, cosmetics and medicines due to its antibacterial effects. Within the hive, propolis plays an important role in bees’ health, with much of its bioactivity largely dependent on the plant resins the bees select for its production. Few chemical studies are available on the chemistry of propolis produced by Australian honeybees (Apis mellifera, Apidae). This study aimed to determine the chemical composition as well as in vitro antimicrobial effects of propolis harvested from honeybees in subtropical eastern Australia. Honeybee propolis was produced using plastic frames and multiple beehives in two subtropical sites in eastern Australia. Methanolic extracts of propolis were analysed by liquid chromatography with ultraviolet detection and high-resolution mass spectrometry (ultra-high-pressure liquid chromatography (UHPLC)-UV-high-resolution tandem mass spectrometry (HR-MS/MS)) and by gas chromatography mass spectrometry (GC-MS). The resulting chemical data were dereplicated for compound characterisation. The two crude extracts in abs. ethanol were tested in vitro by the agar diffusion and broth dilution methods, using a phenol standard solution as the positive control and abs. ethanol as the negative control. Chemical constituents were identified to be pentacyclic triterpenoids and C-prenylated flavonoids, including Abyssinoflavanone VII, Propolin C and Nymphaeol C. The two propolis crude extracts showed bactericidal effects at the minimal inhibitory concentrations of 0.37–2.04 mg mL−1 against Staphylococcus aureus ATCC 25923. However, the extracts were inactive against Klebsiella pneumoniae ATCC 13883 and Candida albicans ATCC 10231. The antistaphylococcal potential of propolis was discussed, also in relation to honeybees’ health, as it warrants further investigations on the social and individual immunities of Australian honeybees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abu-Mellal A, Koolaji N et al (2012) Prenylated cinnamate and stilbenes from Kangaroo Island propolis and their antioxidant activity. Phys Chem Chem Phys 77:251–259. doi:10.1016/j.phytochem.2012.01.012

    CAS  Google Scholar 

  • Banskota AH, Tezuka Y et al (2001) Hepatoprotective and anti-Helicobacter pylori activities of constituents from Brazilian propolis. Phytomedicine 8(1):16–23. doi:10.1078/0944-7113-00004

    Article  PubMed  CAS  Google Scholar 

  • Berenbaum MR, Johnson RM (2015) Xenobiotic detoxification pathways in honey bees. Curr Opin Insect Sci 10:51–58

    Article  Google Scholar 

  • Chen C-N, Wu C-L et al (2004) Propolin C from propolis induces apoptosis through activating caspases, Bid and cytochrome C release in human melanoma cells. Biochem Pharm 67(1):53–66

    Article  PubMed  CAS  Google Scholar 

  • Chen YW, Wu SW et al (2008) Characterisation of Taiwanese propolis collected from different locations and seasons. J Sci Food Agric 88(3):412–419

    Article  CAS  Google Scholar 

  • Cui L, Ndinteh DT et al (2007) Isoprenylated Flavonoids from the Stem Bark of Erythrina abyssinica. J Nat Prod 70(6):1039–1042

    Article  PubMed  CAS  Google Scholar 

  • de Rijke E, Out P et al (2006) Analytical separation and detection methods for flavonoids. J Chromatogr A 1112(1):31–63

    Article  PubMed  Google Scholar 

  • Drescher N, Wallace HM et al (2014) Diversity matters: how bees benefit from different resin sources. Oecologia 176(4):943–953

    Article  PubMed  Google Scholar 

  • Freitas SF, Shinohara L et al (2006) In vitro effects of propolis on Giardia duodenalis trophozoites. Phytomedicine 13(3):170–175. doi:10.1016/j.phymed.2004.07.008

    Article  PubMed  CAS  Google Scholar 

  • Ghisalberti E, Jefferies P et al (1978) Constituents of propolis. Cell Mol Life Sci 34(2):157–158

    Article  CAS  Google Scholar 

  • Greco MK, Hoffmann D et al (2010) The alternative Pharaoh approach: stingless bees mummify beetle parasites alive. Naturwissenschaften 97(3):319–323

    Article  PubMed  CAS  Google Scholar 

  • Inui S, Hosoya T et al (2012a) Solophenols B–D and solomonin: new prenylated polyphenols isolated from propolis collected from the Solomon Islands and their antibacterial activity. J Agric Food Chem 60(47):11765–11770

    Article  PubMed  CAS  Google Scholar 

  • Inui S, Shimamura Y et al (2012b) A new prenylflavonoid isolated from propolis collected in the Solomon Islands. Biosci Biotechnol Biochem 76(5):1038–1040

    Article  PubMed  CAS  Google Scholar 

  • Kumazawa S, Hamasaka T et al (2004) Antioxidant activity of propolis of various geographic origins. Food Chem 84(3):329–339

    Article  CAS  Google Scholar 

  • Kumazawa S, Ueda R et al (2007) Antioxidant prenylated flavonoids from propolis collected in Okinawa, Japan. J Agric Food Chem 55(19):7722–7725

    Article  PubMed  CAS  Google Scholar 

  • Kumazawa S, Nakamura J et al (2008) Plant origin of Okinawan propolis: honeybee behavior observation and phytochemical analysis. Naturwissenschaften 95(8):781–786. doi:10.1007/s00114-008-0383-y

    Article  PubMed  CAS  Google Scholar 

  • Kumazawa S, Murase M et al (2014) Analysis of antioxidant prenylflavonoids in different parts of Macaranga tanarius, the plant origin of Okinawan propolis. Asian Pac J Trop Med 7(1):16–20

    Article  PubMed  CAS  Google Scholar 

  • Marquez Hernandez I, Cuesta-Rubio O et al (2010) Studies on the constituents of yellow Cuban propolis: GC-MS determination of triterpenoids and flavonoids. J Agric Food Chem 58(8):4725–4730

    Article  PubMed  CAS  Google Scholar 

  • Massaro FC, Brooks PR et al (2011) Cerumen of Australian stingless bees (Tetragonula carbonaria): gas chromatography–mass spectrometry fingerprints and potential anti-inflammatory properties. Naturwissenschaften 98(4):329–337

    Article  PubMed  CAS  Google Scholar 

  • Massaro C, Katouli M et al (2014a) Anti-staphylococcal activity of C-methyl flavanones from propolis of Australian stingless bees (Tetragonula carbonaria) and fruit resins of Corymbia torelliana (Myrtaceae). Fitoterapia 95:247–257

    Article  PubMed  CAS  Google Scholar 

  • Massaro CF, Shelley D et al (2014b) In vitro antibacterial phenolic extracts from “sugarbag” pot-honeys of Australian stingless bees (Tetragonula carbonaria). J Agric Food Chem 62(50):12209–12217

    Article  PubMed  CAS  Google Scholar 

  • Massaro CF, Smyth TJ et al (2015) Phloroglucinols from anti‐microbial deposit‐resins of Australian stingless bees (Tetragonula carbonaria). Phytother Res 29(1):48–58

    Article  PubMed  CAS  Google Scholar 

  • Mathe C, Culioli G et al (2004) Characterization of archaeological frankincense by gas chromatography–mass spectrometry. J Chromatogr A 1023(2):277–285

    Article  PubMed  CAS  Google Scholar 

  • Melliou E, Stratis E et al (2007) Volatile constituents of propolis from various regions of Greece—antimicrobial activity. Food Chem 103(2):375–380

    Article  CAS  Google Scholar 

  • Miorin P, Levy Junior N et al (2003) Antibacterial activity of honey and propolis from Apis mellifera and Tetragonisca angustula against Staphylococcus aureus. J Appl Micro 95(5):913–920

    Article  CAS  Google Scholar 

  • Mutai C, Abatis D et al (2004) Cytotoxic lupane-type triterpenoids from Acacia mellifera. Phys Chem Chem Phys 65(8):1159–1164

    CAS  Google Scholar 

  • Ponte F, Silva A et al (2008) Bee-honey, propolis and Eucalyptus globulus extract: preclinical toxicity study in rodents. Pharmacogn Mag 4(16):278

    Google Scholar 

  • Popova M, Silici S et al (2005) Antibacterial activity of Turkish propolis and its qualitative and quantitative chemical composition. Phytomedicine 12(3):221–228. doi:10.1016/j.phymed.2003.09.007

    Article  PubMed  CAS  Google Scholar 

  • Popova M, Dimitrova R et al (2013) Omani propolis: chemical profiling, antibacterial activity and new propolis plant sources. Chem Centr J 7:158–165

    Article  Google Scholar 

  • Popova M, Reyes M, et al. (2014). Propolis chemical composition and honeybee resistance against Varroa destructor. Nat Prod Res(ahead-of-print): 1–7

  • Raghukumar R, Vali L et al (2010) Antimethicillin‐resistant Staphylococcus aureus (MRSA) activity of ‘pacific propolis’ and isolated prenylflavanones. Phytother Res 24(8):1181–1187

    PubMed  CAS  Google Scholar 

  • Righi AA, Alves TR et al (2011) Brazilian red propolis: unreported substances, antioxidant and antimicrobial activities. J Sci Food Agric 91(13):2363–2370

    Article  PubMed  CAS  Google Scholar 

  • Simone-Finstrom M, Spivak M (2010) Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie 41(3):295–311

    Article  Google Scholar 

  • Simone-Finstrom MD, Spivak M (2012) Increased resin collection after parasite challenge: a case of self-medication in honey bees. Plos One 7(3):e34601

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tran VH, Duke RK et al (2012) Propolis with high flavonoid content collected by honey bees from Acacia paradoxa. Phys Chem Chem Phys 81:126–132

    CAS  Google Scholar 

  • Trusheva B, Popova M et al (2011) Indonesian propolis: chemical composition, biological activity and botanical origin. Nat Prod Rep 25(6):606–613

    Article  CAS  Google Scholar 

  • Zhang T, Omar R et al (2014) Chromatographic analysis with different detectors in the chemical characterisation and dereplication of African propolis. Talanta 120:181–190

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Terry Braggins at Analytica Laboratories Ltd, NZ, for HR-MS analyses, to the Craig’s members of ‘Valley Bees’, Gympie, for beekeeping help and to Michael Howes at ‘Tyagarah Apiaries’ and Dieter Horstmann at ‘Eagle Farm’ Tyagarah, NSW, Australia, for supplying honeybee propolis from their beehives.

Funding

This study and CFM were financed through the University of the Sunshine Coast studentships.

Authors’ contributions

Conceived and designed the experiments: CFM. Performed the experiments: CFM, JS and DP. Analysed the data: CFM. Contributed reagents/materials: PB. Wrote the manuscript: CFM, JS and PB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmelina Flavia Massaro.

Ethics declarations

The authors declare that the experiments described in this article comply with the current laws for the conduct of scientific research in Australia.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

The online version of this article contains supplementary materials (UV spectra and diagnostic fragments for compound characterisation), which is available to authorised users.

ESM 1

(DOC 3966 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massaro, C.F., Simpson, J.B., Powell, D. et al. Chemical composition and antimicrobial activity of honeybee (Apis mellifera ligustica) propolis from subtropical eastern Australia. Sci Nat 102, 68 (2015). https://doi.org/10.1007/s00114-015-1318-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-015-1318-z

Keywords

Navigation