Skip to main content
Log in

Insight into the growth dynamics and systematic affinities of the Late Cretaceous Gargantuavis from bone microstructure

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Enigmatic avialan remains of Gargantuavis philoinos from the Ibero-Armorican island of the Late Cretaceous European archipelago (Southern France) led to a debate concerning its taxonomic affinities. Here, we show that the bone microstructure of Gargantuavis resembles that of Apteryx, the extinct emeids and Megalapteryx from New Zealand, and indicates that like these slow-growing terrestrial birds, it took several years to attain skeletal maturity. Our findings suggest that the protracted cyclical growth in these ornithurines may have been in response to insular evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Amprino R, Godina G (1947) La struttura delle ossa nei vertebrati. Pontifica Acad Sci 9:329–463

    Google Scholar 

  • Bourdon E, Castanet J, Ricqlès A de, Scofield P, Tennyson A, Lamrous H, Cubo J (2009) Bone growth marks reveal protracted growth in New Zealand kiwi (Aves, Apterygidae). Biol Lett 5:639–642

    Google Scholar 

  • Buffetaut E, Angst D (2013) New evidence of a giant bird from the Late Cretaceous of France. Geol Mag 150:173–176

    Article  Google Scholar 

  • Buffetaut E, Le Loeuff J (1998) A new giant ground bird from the Upper Cretaceous of southern France. J Geol Soc Lond 155:1–4

    Article  Google Scholar 

  • Buffetaut E, Le Loeuff J (2010) Gargantuavis philoinos: giant bird or giant pterosaur? Ann Paléontol 96:135–141

    Article  Google Scholar 

  • Buffetaut E, Le Loeuff J, Mechin P, Mechin-Salessy A (1995) A large French Cretaceous bird. Nature 377:110

    Article  CAS  Google Scholar 

  • Bunce M, Worthy TH, Phillips MJ, Holdaway RN, Willersley E, Haile J, Shapiro B, Scofield RP, Drummond A, Kamp PJJ, Cooper A (2009) The evolutionary history of the extinct ratite moa and New Zealand Neogene paleogeography. Proc Natl Acad Sci U S A 106:20646–20651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Canoville A, Laurin M (2010) Evolution of humeral microanatomy and lifestyle in amniotes, and some comments on paleobiological inferences. Biol J Linn Soc 100:384–406

    Article  Google Scholar 

  • Castanet J, Smirina E (1990) Introduction to the skeletochronological method in amphibians and reptiles. Ann Sci Nat 11:191–196

    Google Scholar 

  • Castanet J, Francillon-Vieillot H, Meunier FJ, De Ricqles A (1993) Bone and individual aging. Bone: Bone Growth B 7:245

    Google Scholar 

  • Chinsamy A (1995) Histological perspectives on growth in the birds Struthio camelus and Sagittarius serpentarius. Cour Forschungsinstitut Senckenberg 181:317–323

    Google Scholar 

  • Chinsamy A, Raath MA (1992) Preparation of fossil bone for histological examination. Palaeontol Afr 29:39–44

    Google Scholar 

  • Chinsamy A (1990) Physiological implications of the bone histology of Syntarsus rhodesiensis (Saurischia: Theropoda). Palaeontol Afr 27:77–82

  • Chinsamy-Turan A (2005) The microstructure of dinosaur bones: deciphering biology through fine scale techniques. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Chinsamy-Turan A (2012) The forerunners of mammals: radiation, histology, biology. Indiana University Press, Bloomington

    Google Scholar 

  • Chinsamy A, Chiappe L, Dodson P (1994) Growth rings in Mesozoic avian bones: physiological implications for basal birds. Nature 368:196–197

    Google Scholar 

  • Chinsamy A, Codorniu L, Chiappe L (2009) Palaeobiological implications of the bone histology of Pterodaustro guinazui. Anat Rec 292:1462–1477

    Google Scholar 

  • Cojan I, Moreau MG (2006) Correlation of terrestrial climatic fluctuations with global signals during the Upper Cretaceous-Danian in a compressive setting (Provence, France). J Sed Res 76:589–604

    Article  Google Scholar 

  • Enlow DH, Brown SO (1958) A comparative histological study of fossil and recent bone tissues. Part III. Texas J Sci 10:187–230

    Google Scholar 

  • Erickson GM (2005) Assessing dinosaur growth patterns: a microscopic revolution. Trends Ecol Evol 20:677–684

    Article  PubMed  Google Scholar 

  • Erickson GM, Rauhut OWM, Zhou Z, Turner AH, Inouye BD, Hu D, Norell MA (2009) Was dinosaurian physiology inherited by birds? Reconciling slow growth in Archaeopteryx. PLoS One 4:e7390

    Article  PubMed Central  PubMed  Google Scholar 

  • Erismis UC, Chinsamy-Turan A (2010) Ontogenetic changes in the epiphyseal cartilage of Rana (Pelophylax) caralitana (Anura: Ranidae). Anat Rec 293:1825–1837

    Article  Google Scholar 

  • Klein N, Sander PM, Stein K, Le Loeuff J, Carballido JL, Buffetaut E (2012) Modified laminar bone in Ampelosaurus atacis and other titanosaurs (Sauropoda): Implications for life history and physiology. PLoS One 7(5): e36907. doi:10.1371/journal.pone.0036907

  • Köhler M, Moyà-Solà S (2009) Physiological and life history strategies of a fossil large mammal in a resource-limited environment. Proc Natl Acad Sci 106:20354–20358

    Article  PubMed Central  PubMed  Google Scholar 

  • Köhler M, Marín-Moratalla N, Jordana X, Aanes R (2012) Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature 487:358–361

    Article  PubMed  Google Scholar 

  • Legendre L, Le Roy N, Martinez-Maza C, Montes L, Laurin M, Cubo J (2013) Phylogenetic signal in bone histology of amniotes revisited. Zool Scr 42:44–53

    Article  Google Scholar 

  • Le Loeuff J (1995) Ampelosaurus atacis (nov. gen., nov. sp.), a new titanosaurid (Dinosauria, Sauropoda) from the Late Cretaceous of the Upper Aude Valley (France). CR Acad Sci Ser II 321:693–700

    Google Scholar 

  • Mayr G (2009) Paleogene fossil birds. Springer, Berlin

    Book  Google Scholar 

  • Padian K, Horner JR, Ricqlès A de (2004) Growth in small dinosaurs and pterosaurs: the evolution of archosaurian growth strategies. J Vertebr Paleontol 24:555–571

    Google Scholar 

  • Pereda-Suberbiola X (2009) Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review. Bull Soc Geol Fr 180:57–71

    Article  Google Scholar 

  • Reid REH (1990) Zonal ‘growth rings’ in dinosaurs. Mod Geol 15:19–48

    Google Scholar 

  • Ricqlès A de, Meunier FJ, Castanet J, Francillon-Vieillot H (1991) Comparative microstructure of bone. In: Hall BK (ed) Bone. CRC, Boca Raton, pp 1–78

  • Ricqlès A de, Padian K, Horner JR, Franchillon-Vieillot H (2000) Paleohistology of the bones of pterosaurs (Reptilia: Archosauria): anatomy, ontogeny, and biomechanical implications. Zool J Linnean Soc 129:349–385

    Google Scholar 

  • Starck JM, Chinsamy A (2002) Bone microstructure and developmental plasticity in birds and other dinosaurs. J Morphol 254:232–246

    Article  PubMed  Google Scholar 

  • Steel L (2008) The palaeohistology of pterosaur bones: an overview. Zitteliana B28:109–125

    Google Scholar 

  • Steel L (2009) Bone Histology and skeletal pathology of two recently extinct flightless pigeons: Raphus cucullatus and Pezophaps solitaria. J Vertebr Paleontol 29(3):185A

    Google Scholar 

  • Stein K, Sander PM (2009) Histological core drilling: a less destructive method for studying bone histology. Lithodendron: The Occasional Papers of Petrified Forest National Park 1. Methods. In: Brown MA, Kane JF, Parker WG (ed) Fossil preparation: Proceedings of the First Annual Fossil Preparation and Collections Symposium, pp 69–80

  • Turvey ST, Green OR, Holdaway RN (2005) Cortical growth marks reveal extended juvenile development in New Zealand moa. Nature 435:941–943

    Article  Google Scholar 

  • Varricchio DJ (1993) Bone microstructure of the Upper Cretaceous theropod dinosaur Troodon formosus. J Vertebr Paleontol 13:99–104

    Article  Google Scholar 

  • Worthy TH, Holdaway RN (2002) The lost world of the moa. Indiana University Press, Bloomington

    Google Scholar 

Download references

Acknowledgments

Samuel Turvey is thanked for the image of Megalapteryx. Jean Le Loeuff granted permission to sample specimen MDE-A08. The National Research Foundation (South Africa) and the Claude Leon Foundation (South Africa) are acknowledged for funding support to Chinsamy and Canoville, respectively. This work was partly supported by the Interrvie programme of CNRS. Finally, Michel Laurin, Lorna Steel and an anonymous referee are thanked for comments that have improved this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anusuya Chinsamy.

Additional information

Communicated by: Robert R. Reisz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinsamy, A., Buffetaut, E., Canoville, A. et al. Insight into the growth dynamics and systematic affinities of the Late Cretaceous Gargantuavis from bone microstructure. Naturwissenschaften 101, 447–452 (2014). https://doi.org/10.1007/s00114-014-1170-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-014-1170-6

Keywords

Navigation