Skip to main content

Advertisement

Log in

Contrasting influence of soil nutrients and microbial community on differently sized basal consumers

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

There is increasing evidence of the coexistence of trophic and environmental constraints belowground. While too often ignored in current literature, the extent to which phosphorus is relevant for soil biota was demonstrated in this study by positive correlations of soil C/P and N/P ratios with all the measured microbial parameters (biomass, density and activity), with the numerical abundance of roundworms (Nematoda) and potworms (Enchytraeidae) from lower trophic levels and with the roundworm biomass. Total worm biomass seems dependent on land use, being in rangelands about twice as high as in croplands, although the relative contribution of potworms remains comparable for both land use types (49 ± 20 % SD versus 45 ± 27 % SD). Besides soil [P], soil type plays an important role in the relative biomass of potworms compared to roundworms. Soil parameters (here pH, C/P and N/P ratios) are better predictors for the abundance and biomass of roundworms than microbial parameters. We also propose a graphical way to visualize the major responses of basal consumers to their microbial drivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrássy I (1956) Die Rauminhalts- und Gewichtsbestimmung der Fadenwürmer (Nematoden). Acta Zool Hung 2:1–15 (in German)

    Google Scholar 

  • Bakken LR, Olsen RA (1983) Buoyant densities and dry-matter contents of microorganisms: conversion of a measured biovolume into biomass bacteria and fungi from soil. Appl Environ Microbiol 45:1188–1195

    PubMed  CAS  Google Scholar 

  • Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems. Blackwell, Oxford, UK

    Google Scholar 

  • Bijlsma RJ, Lambers H (2000) A dynamic whole-plant model of integrated metabolism of nitrogen and carbon. 2. Balanced growth driven by C fluxes and regulated by signals from C and N substrate. Plant Soil 220:71–87. doi:10.1023/A:1004744903556

    Article  CAS  Google Scholar 

  • Bijlsma RJ, Lambers H, Kooijman SALM (2000) A dynamic whole-plant model of integrated metabolism of nitrogen and carbon. 1. Comparative ecological implications of ammonium–nitrate interactions. Plant Soil 220:49–69. doi:10.1023/A:1004779019486

    Article  CAS  Google Scholar 

  • Bloem J, Veninga M, Shepherd J (1995) Fully automatic determination of soil bacterium numbers, cell volumes, and frequency of dividing cells by confocal laser scanning microscopy and image analysis. Appl Environ Microbiol 61:926–936

    PubMed  CAS  Google Scholar 

  • Briones MJI, Ineson P (2002) Use of 14C carbon dating to determine feeding behaviour of enchytraeids. Soil Biol Biochem 34:881–884. doi:10.1016/S0038-0717(02)00010-X

    Article  CAS  Google Scholar 

  • Brussaard L, Aanen DK, Briones MJI, Decaëns T, De Deyn GB, Fayle TM, James SW, Nobre T (2012) Biogeography and phylogenetic community structure of soil invertebrate ecosystem engineers: global to local patterns, implications for ecosystem functioning and services and global environmental change impacts. In: Wall DH, Bardgett RD, Behan-Pelletier V, Herrick JE, Jones H, Ritz K, Six J, Strong DR, Van der Putten WH (eds) Soil ecology and ecosystem services. Oxford University Press, Oxford, pp 201–232

    Google Scholar 

  • Carpenter SR, Bennett EM (2011) Reconsideration of the planetary boundary for phosphorus. Environ Res Lett 6:014009. doi:10.1088/1748-9326/6/1/014009

    Article  Google Scholar 

  • Coleman DC, Anderson RV, Cole CV, Elliott ET, Woods L, Campion MK (1978) Trophic interactions in soils as they affect energy and nutrient dynamics, IV. Flows of metabolic and biomass carbon. Microb Ecol 4:373–380

    Article  CAS  Google Scholar 

  • Cotner JB, Hall EK, Scott JT, Heldal M (2010) Freshwater bacteria are stoichiometrically flexible with a nutrient composition similar to seston. Front Microbiol 1:132. doi:10.3389/fmicb.2010.00132

    Article  PubMed  Google Scholar 

  • Davidson EA, Howarth RW (2007) Nutrients in synergy. Nature 449:1000–1001. doi:10.1038/4491000a

    Article  PubMed  CAS  Google Scholar 

  • Didden WAM (1993) Ecology of terrestrial Enchytraeidae. Pedobiologia 37:2–29

    Google Scholar 

  • Didden WAM, De Fluiter R (1998) Dynamics and stratification of Enchytraeidae in the organic layer of a Scots pine forest. Biol Fertil Soils 26:305–312. doi:10.1007/s003740050381

    Article  Google Scholar 

  • Ellis EC, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty N (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr 19:589–606. doi:10.1111/j.1466-8238.2010.00540.x

    Google Scholar 

  • Elser JJ (2011) A world awash with nitrogen. Science 334:1504–1505. doi:10.1126/science.1215567

    Article  PubMed  CAS  Google Scholar 

  • Elser JJ, Bennett E (2011) Phosphorus cycle: a broken biogeochemical cycle. Nature 478:29–31. doi:10.1038/478029a

    Article  PubMed  CAS  Google Scholar 

  • Elser JJ, Bracken ME, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. doi:10.1111/j.1461-0248.2007.01113.x

    Article  PubMed  Google Scholar 

  • Ferris H (2010) Form and function: metabolic footprints of nematodes in the soil food web. Eur J Soil Biol 46:97–104. doi:10.1016/j.ejsobi.2010.01.003

    Article  Google Scholar 

  • Gignoux J, House J, Hall D, Masse D, Nacro HB, Abbadie L (2001) Design and test of a generic cohort model of soil organic matter decomposition: the SOMKO model. Glob Ecol Biogeogr 10:639–660. doi:10.1046/j.1466-822X.2001.t01-1-00250.x

    Article  Google Scholar 

  • Herbert D (1976) Stoichiometric aspects of microbial growth. In: Dean ACR, Ellwood DC, Evans CGT, Melling J (eds) Continuous culture 6: application and new fields. Ellis Horwood, Chichester, pp 1–30

    Google Scholar 

  • Hunt HW, Wall DH (2002) Modeling the effects of loss of soil biodiversity on ecosystem function. Glob Chang Biol 8:32–49. doi:10.1046/j.1365-2486.2002.00425.x

    Article  Google Scholar 

  • Hunt HW, Coleman DC, Ingham ER, Ingham RE, Elliott ET, Moore JC, Rose SL, Reid CPP, Morley CR (1987) The detrital food web in a shortgrass prairie. Biol Fertil Soils 3:57–68. doi:10.1007/BF00260580

    Google Scholar 

  • Jänsch S, Römbke J, Didden W (2005) The use of enchytraeids in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:266–277. doi:10.1016/j.ecoenv.2004.10.025

    Article  PubMed  Google Scholar 

  • Kaspari M (2004) Using the metabolic theory of ecology to predict global patterns of abundance. Ecology 85:1800–1802. doi:10.1890/03-0682

    Article  Google Scholar 

  • Kaspari M, Weiser MD (2012) Energy, taxonomic aggregation, and the geography of ant abundance. Ecography 35:65–72. doi:10.1111/j.1600-0587.2011.06971.x

    Article  Google Scholar 

  • Keiblinger KM, Hall EK, Wanek W, Szukics U, Hämmerle I, Ellersdorfer G, Böck S, Strauss J, Sterflinger K, Richter A, Zechmeister-Boltenstern S (2010) The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiol Ecol 73:430–440. doi:10.1111/j.1574-6941.2010.00912.x

    PubMed  CAS  Google Scholar 

  • Lavorel S, Storkey J, Bardgett RD, De Bello F, Berg MP, Le Roux X, Moretti M, Mulder C, Pakeman RJ, Díaz S, Harrington R (2013) A novel framework for linking functional diversity of plants and other trophic levels for the quantification of ecosystem services. J Veg Sci doi: 10.1111/jvs.12083

  • MacDonald GK, Bennett EM, Potter PA, Ramankutty N (2011) Agronomic phosphorus imbalances across the world's croplands. Proc Natl Acad Sci U S A 108:3086–3091. doi:10.1073/pnas.1010808108

    Article  PubMed  CAS  Google Scholar 

  • Martin LJ, Blossey B, Ellis E (2012) Mapping where ecologists work: biases in the global distribution of terrestrial ecological observations. Front Ecol Environ 10:195–201. doi:10.1890/110154

    Article  Google Scholar 

  • Moore JC, Hunt HW (1988) Resource compartmentation and the stability of real ecosystems. Nature 333:261–263. doi:10.1038/333261a0

    Article  Google Scholar 

  • Moore JC, McCann K, Setälä H, De Ruiter PC (2003) Top-down is bottom-up: does predation in the rhizosphere regulate aboveground dynamics? Ecology 84:846–857. doi:10.1890/0012-9658(2003)084[0846:TIBDPI]2.0.CO;2

    Article  Google Scholar 

  • Mulder C, Elser JJ (2009) Soil acidity, ecological stoichiometry and allometric scaling in grassland food webs. Glob Chang Biol 15:2730–2738. doi:10.1111/j.1365-2486.2009.01899.x

    Article  Google Scholar 

  • Mulder C, Vonk JA (2011) Nematode traits and environmental constraints in 200 soil systems: scaling within the 60–6,000 μm body size range. Ecology 92:2004. doi:10.1890/11-0546.1

    Article  Google Scholar 

  • Mulder C, Cohen JE, Setälä H, Bloem J, Breure AM (2005) Bacterial traits, organism mass, and numerical abundance in the detrital soil food web of Dutch agricultural grasslands. Ecol Lett 8:80–90. doi:10.1111/j.1461-0248.2004.00704.x

    Article  Google Scholar 

  • Mulder C, Den Hollander HA, Vonk JA, Rossberg AG, Jagers op Akkerhuis GAJM, Yeates GW (2009) Soil resource supply influences faunal size-specific distributions in natural food webs. Naturwissenschaften 96:813–826. doi:10.1007/s00114-009-0539-4

    Article  PubMed  CAS  Google Scholar 

  • Mulder C, Boit A, Bonkowski M, De Ruiter PC, Mancinelli G, Van der Heijden MGA, Van Wijnen HJ, Vonk JA, Rutgers M (2011) A belowground perspective on Dutch agroecosystems: how soil organisms interact to support ecosystem services. Adv Ecol Res 44:277–357. doi:10.1016/B978-0-12-374794-5.00005-5

    Article  Google Scholar 

  • Mulder C, Boit A, Mori S, Vonk JA, Dyer SD, Faggiano L, Geisen S, González AL, Kaspari M, Lavorel S, Marquet PA, Rossberg AG, Sterner RW, Voigt W, Wall DH (2012) Distributional (in)congruence of biodiversity–ecosystem functioning. Adv Ecol Res 46:1–88. doi:10.1016/B978-0-12-396992-7.00001-0

    Article  Google Scholar 

  • Neher DA, Campbell CL (1994) Nematode communities and microbial biomass in soils with annual and perennial crops. Appl Soil Ecol 1:17–28. doi:10.1016/0929-1393(94)90020-5

    Article  Google Scholar 

  • Oberholzer HR, Höper H (2000) Reference systems for the microbiological evaluation of soils. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten 55:19–34

    CAS  Google Scholar 

  • Oostenbrink M (1960) Estimate nematode populations by some selected methods. In: Sasser JN, Jenkins WR (eds) Nematology. University of North Carolina Press, Chapel Hill, NC, pp 85–102

    Google Scholar 

  • Peñuelas J, Sardans J, Rivas-Ubach A, Janssens IA (2012) The human-induced imbalance between C, N and P in Earth's life system. Glob Chang Biol 18:3–6. doi:10.1111/j.1365-2486.2011.02568.x

    Article  Google Scholar 

  • Petersen H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39:288–388

    Article  Google Scholar 

  • Postma-Blaauw MB, De Goede RGM, Bloem J, Faber JH, Brussaard L (2012) Agricultural intensification and de-intensification differentially affect taxonomic diversity of predatory mites, earthworms, enchytraeids, nematodes and bacteria. Appl Soil Ecol 57:39–49. doi:10.1016/j.apsoil.2012.02.011

    Article  Google Scholar 

  • Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596. doi:10.1128/AEM.02775-08

    Article  PubMed  CAS  Google Scholar 

  • Rutgers M, Schouten AJ, Bloem J, Van Eekeren N, De Goede RGM, Jagers op Akkerhuis GAJM, Van der Wal A, Mulder C, Brussaard L, Breure AM (2009) Biological measurements in a nationwide soil monitoring network. Eur J Soil Sci 60:820–832. doi:10.1111/j.1365-2389.2009.01163.x

    Article  Google Scholar 

  • Scheunemann N, Scheu S, Butenschoen O (2010) Incorporation of decade old soil carbon into the soil animal food web of an arable system. Appl Soil Ecol 46:59–63. doi:10.1016/j.apsoil.2010.06.014

    Article  Google Scholar 

  • Statzner B, Hildrew AG, Resh VH (2001) Species traits and environmental constraints: entomological research and the history of ecological theory. Annu Rev Entomol 46:291–316. doi:10.1146/annurev.ento.46.1.291

    Article  PubMed  CAS  Google Scholar 

  • Van Vliet PCJ, Beare MH, Coleman DC (1995) Population dynamics and functional roles of Enchytraeidae (Oligochaeta) in hardwood forest and agricultural ecosystems. Plant Soil 170:199–207. doi:10.1007/BF02183067

    Article  Google Scholar 

  • Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, Johnes PJ, Katzenberger J, Martinelli LA, Matson PA, Nziguheba G, Ojima D, Palm CA, Robertson GP, Sanchez PA, Townsend AR, Zhang FS (2009) Nutrient imbalances in agricultural development. Science 324:1519–1520. doi:10.1126/science.1170261

    Article  PubMed  CAS  Google Scholar 

  • Wardle DA (1993) Changes in the microbial biomass and metabolic quotient during leaf litter succession in some New Zealand forest and scrubland ecosystems. Funct Ecol 7:346–355

    Article  Google Scholar 

  • Wardle DA, Barker GM (1997) Competition and herbivory in establishing grassland communities: implications for plant biomass, species diversity and soil microbial activity. Oikos 80:470–480

    Article  Google Scholar 

  • Wardle DA, Barker GM, Bonner KI, Nicholson KS (1998) Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? J Ecol 86:405–420. doi:10.1046/j.1365-2745.1998.00268.x

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. doi:10.1126/science.1094875

    Google Scholar 

  • Wolters V (2000) Invertebrate control of soil organic matter stability. Biol Fertil Soils 31:1–19. doi:10.1007/s003740050618

    Article  CAS  Google Scholar 

  • Yeates GW, Bongers T, De Goede RGM, Freckmann DW, Georgieva SS (1993) Feeding habits in nematode families and genera—an outline for soil ecologists. J Nematol 25:315–331

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Jaap Bloem for microbial analyses, Harm Keidel and Tamás Salánki for faunal analyses, Anton Schouten and Jaap Bogte for data mining, and Ron de Goede, Hans Helder, Valentina Sechi, Harm van Wijnen and four anonymous referees for their helpful comments. Our research was financially supported by ERGO grants 838.06.063 and 838.06.064 of The Netherlands Organization for Scientific Research and partly by the ESF Research Network Programme for “Body Size and Ecosystem Dynamics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Mulder.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vonk, J.A., Mulder, C. Contrasting influence of soil nutrients and microbial community on differently sized basal consumers. Naturwissenschaften 100, 611–620 (2013). https://doi.org/10.1007/s00114-013-1058-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-013-1058-x

Keywords

Navigation