Skip to main content
Log in

Two lactones in the androconial scent of the lycaenid butterfly Celastrina argiolus ladonides

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Male adult butterflies of many species have characteristic odors originating from the disseminating organs known as androconia. Despite the fact that androconia exist in several species, there have been few investigations on adult scents from the lycaenid species. Celastrina argiolus ladonides (Lycaenidae) is a common species in Eurasia. We have reported that male adults of this species emit a faint odor, and the major components causing this odor have been newly found in the Insecta. By using field-caught individuals, we determined the chemical nature and location of this odor in the butterfly. Gas chromatography–mass spectrometry (GC–MS) analyses revealed that two lactone compounds, lavender lactone and δ-decalactone, are present in the extracts of males but absent in those of the females. On an average, approximately 50 ng of each compound was found per male. Chiral GC analyses performed using enantiomerically pure standards revealed that the natural lavender lactone was a mixture of two enantiomers with an R/S ratio of 32:68, whereas the natural δ-decalactone contained only the R-enantiomer. When the analyses were conducted using different parts—forewings, hindwings, and body—of three males, the lactones were more abundantly found on the forewings and hindwings than on the body. Microscopic observation of the wings demonstrated that battledore scales known as androconia are scattered on the upper surface of both the wings of C. argiolus ladonides males. These results indicate that the specialized scales on the wings of males serve as scent-disseminating organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Andersson S, Nilsson LA, Groth I, Bergström G (2002) Floral scents in butterfly-pollinated plants: possible convergence in chemical composition. Bot J Linn Soc 140:129–153. doi:10.1046/j.1095-8339.2002.00068.x

    Article  Google Scholar 

  • Andersson J, Borg-Karlson AK, Vongvanich N, Wiklund C (2007) Male sex pheromone release and female mate choice in a butterfly. J Exp Biol 210:964–970. doi:10.1241/jeb.02726

    Article  PubMed  CAS  Google Scholar 

  • Baskaran S, Islam I, Chandrasekaran S (1990) A general approach to the synthesis of butanolides: synthesis of the sex pheromone of the Japanese beetle. J Org Chem 55:891–895. doi:10.1021/jo00290a018

    Article  CAS  Google Scholar 

  • Bergström G, Lundgren L (1973) Androconial secretion of three species of butterflies of the genus Pieris (Lep., Pieridae). Zoon Suppl 1:67–75

    Google Scholar 

  • Boppré M (1984) Chemically mediated interactions between butterflies. In: Vane-Wright RI, Ackery PR (eds) The biology of butterflies. Academic, New York, pp 259–275

    Google Scholar 

  • Clench HK, Miller LD (1980) Papilio ladon Cramer vs. Argus pseudargiolus Boisduval and Deconte (Lycaenidae): a nomenclatorial nightmare. J Lepid Soc 34:103–119

    Google Scholar 

  • Costanzo K, Monteiro A (2007) The use of chemical and visual cues in female choice in the butterfly Bicyclus anynana. Proc R Soc B 274:845–851. doi:10.1098/rspb.2006.3729

    Article  PubMed  Google Scholar 

  • El-Sayed AM (2012) The Pherobase. http://www.pherobase.com/. Accessed 19 Nov 2012

  • Grund R, Eastwood R (2010) New Australian butterfly genus Jameela gen. nov. (Lepidoptera: Lycaenidae: Polyommatinae: Polyommatini) revealed by molphological, ecological and molecular data. Entomol Sci 13:134–143. doi:10.1111/j.1479-8298.2010.00368.x

    Article  Google Scholar 

  • Honda K (2008) Addiction to pyrrolizidine alkaloids in male danaine butterflies: A quest for the evolutionary origin of pharmacophagy. In: Maes RP (ed) Insect physiology: New research. Nova Scientific, New York, pp 73–118

    Google Scholar 

  • Jürgens A, Witt T, Gottsberger G (2002) Flower scent composition in night-flowering Silene species (Caryophyllaceae). Biochem Syst Ecol 30:383–397. doi:10.1016/S0305-1978(01)00106-5

    Article  Google Scholar 

  • Kataoka E, Saigusa T, Yata O (1999) Morphological differences in the ordinary scales between two species of Japanese Pieris, P. melete Ménétriès and P. napi (Linnaeus) (Lepidoptera: Pieridae). Entomol Sci 2:75–82

    Google Scholar 

  • Kite GC, Smith SAL (1997) Inflorescence odor of Senecio articulatus: temporal variation in isovaleric acid levels. Phytochemistry 45:1135–1138. doi:10.1016/S0031-9422(97)00141-6

    Article  CAS  Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Biol 72:1–120. doi:10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2

    Google Scholar 

  • Kristensen NP, Simonsen TJ (2003) ‘Hairs’ and scales. In: Kristensen NP (ed) Lepidoptera, moths and butterflies, vol. 2: morphology, physiology, and development. Walter de Gruyter, Berlin, pp 9–22

    Google Scholar 

  • Kuwahara Y (1979) Scent scale substances of male Pieris melete Ménétriès (Pieridae: Lepidoptera). Appl Entomol Zool 14:350–355

    CAS  Google Scholar 

  • Lundgren L, Bergström G (1975) Wing scents and scent-released phases in the courtship behavior of Lycaeides argyrognomon (Lepidoptera: Lycaenidae). J Chem Ecol 1:399–412. doi:10.1007/BF00988581

    Article  CAS  Google Scholar 

  • Luyt R, Johnson SD (2001) Hawkmoth pollination of the African epiphytic orchid Mystacidium venosum, with special reference to flower and pollen longevity. Plant Syst Evol 228:49–62. doi:10.1007/s006060170036

    Article  Google Scholar 

  • Nieberding CM, de Vos H, Schneider MV, Lassance J-M, Estramil N, Andersson J, Bång J, Hedenström E, Löfstedt C, Brakefield PM (2008) The male sex pheromone of the buttefly Bicyclus anynana: towards an evolutionary analysis. PLoS One 3:e2751. doi:10.1371/journal.pone.0002751

    Article  PubMed  Google Scholar 

  • Nieberding CM, Fischer K, Saastamoinen M, Allen CE, Wallin EA, Hedenström E, Brakefield PM (2012) Cracking the olfactory code of a butterfly: the scent of aging. Ecol Lett 15:415–424. doi:10.1111/j.1461-0248.2012.01748.x

    Article  PubMed  Google Scholar 

  • Pelham JP (2008) A catalogue of the United States and Canada with a complete bibliography of the descriptive and systematic literature. J Res Lepid 40:1–658

    Google Scholar 

  • Pierce NR, Braby MF, Heath MF, Lohman DJ, Mathew J, Rand DB, Travassos MA (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771. doi:10.1146/annurev.ento.47.091201.145257

    Article  PubMed  CAS  Google Scholar 

  • Robbins RK, Martins ARP, Busby RC, Duarte M (2012) Loss of male secondary sexual structures in allopatry in the Neotropical butterfly genus Arcas (Lycaenidae: Theclinae: Eumaeini). Insect Syst Evol 43:35–65. doi:10.1163/187631212X626195

    Article  Google Scholar 

  • Shirouzu T (2006) Lycaenidae. In: Odagiri K, Yago M (eds) The standard of butterflies in Japan. Gakken, Tokyo, pp 80–171 (in Japanese)

    Google Scholar 

  • Stritzke K, Schulz S, Nishida R (2002) Absolute configuration of β- and δ-lactones present in the pheromone system of the giant white butterfly Idea leuconoe. Eur J Org Chem 2002:3884–3892. doi:10.1002/1099-0690(200211)2002:22<3884::AID-EJOC3884>3.0.CO;2-4

    Article  Google Scholar 

  • Tamura H, Appel M, Richling E, Schreier P (2005) Authenticity assessment of γ- and δ-decalactone from Prunus fruits by gas chromatography combustion/pyrolysis isotope ratio mass spectrometry (GC-C/P-IRMS). J Agric Food Chem 53:5397–5401. doi:10.1021/jf0503964

    Article  PubMed  CAS  Google Scholar 

  • Tian R, Izumi Y, Sonoda S, Yoshida H, Takanashi T, Nakamuta K, Tsumuki H (2008) Electroanttenographic responses and field attraction to peach fruit odors in the fruit-piercing moth, Oraesia excavata (Butler) (Lepidoptera: Noctuidae). Appl Entomol Zool 43:265–269. doi:10.1303/aez.2008.265

    Article  Google Scholar 

  • Timmer R, ter Heide R, de Valois PJ, Wobben HJ (1975) Analysis of the lactone fraction of lavender oil (Lavandula vera D.C.). J Agric Food Chem 23:53–56. doi:10.1021/jf60197a009

    Article  CAS  Google Scholar 

  • Yildizhan S, van Loon J, Sramkova A, Ayasse M, Arsene C, ten Broeke C, Schulz S (2009) Aphrodisiac pheromones from the wings of the small cabbage white and large cabbage white butterflies, Pieris rapae and Pieris brassicae. Chem Bio Chem 10:1666–1677. doi:10.1002/cbic.200900183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Ômura.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ômura, H., Yakumaru, K., Honda, K. et al. Two lactones in the androconial scent of the lycaenid butterfly Celastrina argiolus ladonides . Naturwissenschaften 100, 373–377 (2013). https://doi.org/10.1007/s00114-013-1030-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-013-1030-9

Keywords

Navigation