Skip to main content
Log in

Optimal foraging, not biogenetic law, predicts spider orb web allometry

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The biogenetic law posits that the ontogeny of an organism recapitulates the pattern of evolutionary changes. Morphological evidence has offered some support for, but also considerable evidence against, the hypothesis. However, biogenetic law in behavior remains underexplored. As physical manifestation of behavior, spider webs offer an interesting model for the study of ontogenetic behavioral changes. In orb-weaving spiders, web symmetry often gets distorted through ontogeny, and these changes have been interpreted to reflect the biogenetic law. Here, we test the biogenetic law hypothesis against the alternative, the optimal foraging hypothesis, by studying the allometry in Leucauge venusta orb webs. These webs range in inclination from vertical through tilted to horizontal; biogenetic law predicts that allometry relates to ontogenetic stage, whereas optimal foraging predicts that allometry relates to gravity. Specifically, pronounced asymmetry should only be seen in vertical webs under optimal foraging theory. We show that, through ontogeny, vertical webs in L. venusta become more asymmetrical in contrast to tilted and horizontal webs. Biogenetic law thus cannot explain L. venusta web allometry, but our results instead support optimization of foraging area in response to spider size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • ap Rhisiart A, Vollrath F (1994) Design-features of the orb web of the spider, Araneus diadematus. Behav Ecol 5:280–287

    Article  Google Scholar 

  • Barrantes G, Eberhard WG (2010) Ontogeny repeats phylogeny in Steatoda and Latrodectus spiders. J Arachnol 38:485–494. doi:10.1636/b10-05.1

    Article  Google Scholar 

  • Benjamin SP, Zschokke S (2004) Homology, behaviour and spider webs: web construction behaviour of Linyphia hortensis and L. triangularis (Araneae: Linyphiidae) and its evolutionary significance. J Evol Biol 17:120–130. doi:10.1046/j.1420-9101.2004.00667.x

    Article  PubMed  CAS  Google Scholar 

  • Blackledge TA (2011) Prey capture in orb weaving spiders: are we using the best metric? J Arachnol 39:205–210

    Article  Google Scholar 

  • Blackledge TA, Scharff N, Coddington JA, Szuts T, Wenzel JW, Hayashi CY, Agnarsson I (2009) Reconstructing web evolution and spider diversification in the molecular era. Proc Natl Acad Sci USA 106:5229–5234. doi:10.1073/pnas.0901377106

    Article  PubMed  CAS  Google Scholar 

  • Blackledge TA, Kuntner M, Agnarsson I (2011) The form and function of spider orb webs: evolution from silk to ecosystems. In: Casas J (ed) Advances in insect physiology. Academic, Burlington, pp 175–262, Vol. 41, doi:10.1016/b978-0-12-415919-8.00004-5

    Google Scholar 

  • Bleher B (2000) Development of web-building and spinning apparatus in the early ontogeny of Nephila madagascariensis (Vinson, 1863) (Araneae: Tetragnathidae). Bull Br Arachnol Soc 11:275–283

    Google Scholar 

  • Coddington JA (1986) The monophyletic origin of the orb web. In: Shear WA (ed) Spiders: webs, behavior, and evolution. Stanford University Press, Stanford, pp 319–363

    Google Scholar 

  • Coslovsky M, Zschokke S (2009) Asymmetry in orb-webs: an adaptation to web building costs? J Insect Behav 22:29–38. doi:10.1007/s10905-008-9151-2

    Article  Google Scholar 

  • Eberhard WG (1975) Inverted ladder orb web of Scoloderus sp. and intermediate orb of Eustala sp. Araneae—Araneidae. J Nat Hist 9:93–106. doi:10.1080/00222937500770071

    Article  Google Scholar 

  • Eberhard WG (1985) The “sawtoothed” orb of Eustala sp., with a discussion of the ontogenetic patterns of change in web design in spiders. Psyche 92:105–118

    Article  Google Scholar 

  • Eberhard WG (1990) Function and phylogeny of spider webs. Ann Rev Ecol Syst 21:341–372

    Article  Google Scholar 

  • Eberhard WG, Barrantes G, Madrigal-Brenes R (2008) Vestiges of an orb-weaving ancestor? The “biogenetic law” and ontogenetic changes in the webs and building behavior of the black widow spider Latrodectus geometricus (Araneae Theridiidae). Ethol Ecol Evol 20:211–244

    Article  Google Scholar 

  • Field A (ed) (2005) Discovering statistics using SPSS, 2nd edn. Sage Publications, London

    Google Scholar 

  • Garb JE, DiMauro T, Vo V, Hayashi CY (2006) Silk genes support the single origin of orb webs. Science 312:1762–1762. doi:10.1126/science.1127946

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ (1992) Ontogeny and phylogeny—revisited and reunited. Bioessays 14:275–279. doi:10.1002/bies.950140413

    Article  PubMed  CAS  Google Scholar 

  • Griswold CE, Coddington JA, Hormiga G, Scharff N (1998) Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea). Zool J Linnean Soc Lond 123:1–99

    Article  Google Scholar 

  • Harmer AMT, Herberstein ME (2009) Taking it to extremes: what drives extreme web elongation in Australian ladder web spiders (Araneidae: Telaprocera maudae)? Anim Behav 78:499–504. doi:10.1016/j.anbehav.2009.05.023

    Article  Google Scholar 

  • Harmer AMT, Kokko H, Herberstein ME, Madin JS (2012) Optimal web investment in sub-optimal foraging conditions. Naturwissenschaften 99:65–70. doi:10.1007/s00114-011-0862-4

    Article  PubMed  CAS  Google Scholar 

  • Heiling AM, Herberstein ME (1999) The role of experience in web-building spiders (Araneidae). Anim Cogn 2:171–177

    Article  Google Scholar 

  • Herberstein ME, Heiling AM (1999) Asymmetry in spider orb webs: a result of physical constraints? Anim Behav 58:1241–1246. doi:10.1006/anbe.1999.1255

    Article  PubMed  Google Scholar 

  • Herberstein ME, Tso IM (2011) Spider webs: evolution, diversity and plasticity. In: Herberstein ME (ed) Spider behaviour: flexibility and versatility. Cambridge University Press, Cambridge, pp 57–98

    Chapter  Google Scholar 

  • Hesselberg T (2010) Ontogenetic changes in web design in two orb-web spiders. Ethology 116:535–545. doi:10.1111/j.1439-0310.2010.01760.x

    Article  Google Scholar 

  • Kuntner M, Agnarsson I (2009) Phylogeny accurately predicts behaviour in Indian Ocean Clitaetra spiders (Araneae : Nephilidae) Invertebr Syst 23:193–204. doi:10.1071/is09002

    Article  Google Scholar 

  • Kuntner M, Haddad CR, Aljancic G, Blejec A (2008) Ecology and web allometry of Clitaetra irenae, an arboricolous African orb-weaving spider (Araneae, Araneoidea, Nephilidae). J Arachnol 36:583–594

    Article  Google Scholar 

  • Kuntner M, Gregorič M, Li DQ (2010a) Mass predicts web asymmetry in Nephila spiders. Naturwissenschaften 97:1097–1105. doi:10.1007/s00114-010-0736-1

    Article  PubMed  CAS  Google Scholar 

  • Kuntner M, Kralj-Fišer S, Gregorič M (2010b) Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns in Nephilidae. Biol J Linn Soc 99:849–866

    Article  Google Scholar 

  • Masters WM, Moffat AJM (1983) A functional explanation of top-bottom asymmetry in vertical orbwebs. Anim Behav 31:1043–1046. doi:10.1016/s0003-3472(83)80010-4

    Article  Google Scholar 

  • Miyazaki JM, Mickevich MF (1982) Evolution of Chesapecten (Mollusca, Bivalvia, Miocene-Pliocene) and the biogenetic law. Evol Biol 15:369–409

    Article  Google Scholar 

  • Nakata K (2010) Does ontogenetic change in orb web asymmetry reflect biogenetic law? Naturwissenschaften 97:1029–1032. doi:10.1007/s00114-010-0719-2

    Article  PubMed  CAS  Google Scholar 

  • Nakata K, Zschokke S (2010) Upside-down spiders build upside-down orb webs: web asymmetry, spider orientation and running speed in Cyclosa. Proc Roy Soc B Biol Sci 277:3019–3025. doi:10.1098/rspb.2010.0729

    Article  Google Scholar 

  • Nelson G (1978) Ontogeny, phylogeny, paleontology, and the biogenetic law. Syst Zool 27:324–345. doi:10.2307/2412883

    Article  Google Scholar 

  • Olsson L, Levit GS, Hossfeld U (2010) Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions. Naturwissenschaften 97:951–969. doi:10.1007/s00114-010-0720-9

    Article  PubMed  CAS  Google Scholar 

  • Peters HM (1937) Studien am Netz der Kreuzspinne (Aranea diadema.). 1. Die Grundstruktur des Netzes und Beziehungen zum Bauplan des Spinnenkorpers. Z Morphol Ökol Tiere 33:128–150

    Article  Google Scholar 

  • Richardson MK, Keuck G (2002) Haeckel's ABC of evolution and development. Biol Rev 77:495–528. doi:10.1017/s1464793102005948

    Article  PubMed  Google Scholar 

  • Richardson MK, Hanken J, Gooneratne ML, Pieau C, Raynaud A, Selwood L, Wright GM (1997) There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development. Anat Embryol 196:91–106. doi:10.1007/s004290050082

    Article  PubMed  CAS  Google Scholar 

  • Sensenig A, Agnarsson I, Gondek TM, Blackledge TA (2010) Webs in vitro and in vivo: spiders alter their orb-web spinning behavior in the laboratory. J Arachnol 38:183–191

    Article  Google Scholar 

  • Theissen G, Saedler H (1995) MADS-box genes in plant ontogeny and phylogeny—Haeckel's ‘biogenetic law’ revisited. Curr Opin Genet Dev 5:628–639. doi:10.1016/0959-437x(95)80032-8

    Article  PubMed  CAS  Google Scholar 

  • Venner S, Casas J (2005) Spider webs designed for rare but life-saving catches. Proc Roy Soc B Biol Sci 272:1587–1592. doi:10.1098/rspb.2005.3114

    Article  Google Scholar 

  • Vollrath F, Selden P (2007) The role of behavior in the evolution of spiders, silks, and webs. Ann Rev Ecol Evol Syst 38:819–846. doi:10.1146/annurev.ecolsys.37.091305.110221

    Article  Google Scholar 

  • Wenzel JW (1993) Application of the biogenetic law to behavioral ontogeny—a test using nest architecture in paper wasps. J Evol Biol 6:229–247. doi:10.1046/j.1420-9101.1993.6020229.x

    Article  Google Scholar 

  • Zschokke S, Nakata K (2010) Spider orientation and hub position in orb webs. Naturwissenschaften 97:43–52. doi:10.1007/s00114-009-0609-7

    Article  PubMed  CAS  Google Scholar 

  • Zschokke S, Vollrath F (1995) Web construction patterns in a range of orb-weaving spiders (Araneae). Eur J Entomol 92:523–541

    Google Scholar 

Download references

Acknowledgments

We thank Laura May-Collado, Arian Avalos, and Mayte Avalos for logistic help, and Simona Kralj-Fišer for help in statistical analysis. This work was supported by the Slovenian Research Agency (grants P1-0236, J1-2063 to MK), the Slovene Human Resources Development and Scholarship Fund (grant 11010-50/2010 to MG), and National Science Foundation (DEB-1050187-1050253 to IA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matjaž Gregorič.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregorič, M., Kiesbüy, H.C., Quiñones Lebrón, S.G. et al. Optimal foraging, not biogenetic law, predicts spider orb web allometry. Naturwissenschaften 100, 263–268 (2013). https://doi.org/10.1007/s00114-013-1015-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-013-1015-8

Keywords

Navigation